Emergent Ashkin-Teller criticality in a constrained boson model
- URL: http://arxiv.org/abs/2311.12107v4
- Date: Sat, 02 Nov 2024 02:41:13 GMT
- Title: Emergent Ashkin-Teller criticality in a constrained boson model
- Authors: Anirudha Menon, Anwesha Chattopadhyay, K. Sengupta, Arnab Sen,
- Abstract summary: We show, via explicit computation on a constrained bosonic model, that the presence of subsystem symmetries can lead to a quantum phase transition.
We provide an effective Landau-Ginzburg theory for such a transition, and discuss the connection of our model to the universality model describing Rydberg atom arrays.
- Score: 0.0
- License:
- Abstract: We show, via explicit computation on a constrained bosonic model, that the presence of subsystem symmetries can lead to a quantum phase transition (QPT) where the critical point exhibits an emergent enhanced symmetry. Such a transition separates a unique gapped ground state from a gapless one; the latter phase exhibits a broken $Z_2$ symmetry which we tie to the presence of the subsystem symmetries in the model. The intermediate critical point separating these phases exhibits an additional emergent $Z_2$ symmetry which we identify; this emergence leads to a critical theory in the Ashkin-Teller, instead of the expected Ising, universality class. We show that the transitions of the model reproduces the Askhin-Teller critical line with variable correlation length exponent $\nu$ but constant central charge $c$. We verify this scenario via explicit exact-diagonalization computations, provide an effective Landau-Ginzburg theory for such a transition, and discuss the connection of our model to the PXP model describing Rydberg atom arrays.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - Latent Su-Schrieffer-Heeger models [0.0]
Su-Schrieffer-Heeger (SSH) chain is the reference model of a one-dimensional topological insulator.
Here, we harness recent graph-theoretical results to construct families of setups whose unit cell features neither of these symmetries.
This causes the isospectral reduction -- akin to an effective Hamiltonian -- of the resulting lattice to have the form of an SSH model.
arXiv Detail & Related papers (2023-10-11T16:00:21Z) - Systematic compactification of the two-channel Kondo model. III. Extended field-theoretic renormalization group analysis [44.99833362998488]
We calculate the detailed flow for the (multi) two-channel Kondo model and its compactified versions.
We gain insights into the contradistinction between the consistent vs. conventional bosonization-debosonization formalisms.
In particular, we make use of renormalization-flow arguments to further justify the consistent refermionization of the parallel Kondo interaction.
arXiv Detail & Related papers (2023-08-07T14:07:21Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Nonlinear sigma models for monitored dynamics of free fermions [0.0]
We derive descriptions for measurement-induced phase transitions in free fermion systems.
We use the replica trick to map the dynamics to the imaginary time evolution of an effective spin chain.
This is a nonlinear sigma model for an $Ntimes N$ matrix, in the replica limit $Nto 1$.
arXiv Detail & Related papers (2023-02-24T18:56:37Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Emergent XY* transition driven by symmetry fractionalization and anyon
condensation [0.0]
We study the phase diagram and anyon condensation transitions of a $mathbbZ$ topological order perturbed by Ising interactions in the Toric Code.
The interplay between the global Ising symmetry and the lattice space group symmetries results in a non-trivial symmetry fractionalization class for the anyons.
We provide numerical evidence for the occurrence of two symmetry breaking patterns predicted by the specific symmetry fractionalization class of the anyons in the explored phase diagram.
arXiv Detail & Related papers (2022-04-07T18:00:00Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - The quantum phase transitions of dimer chain driven by an imaginary ac
field [0.0]
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field.
The approach has the potential applications to investigate the topological states of matter driven by the complex external parameters.
arXiv Detail & Related papers (2020-09-08T09:07:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.