論文の概要: Characterizing Browser Fingerprinting and its Mitigations
- arxiv url: http://arxiv.org/abs/2311.12197v1
- Date: Thu, 12 Oct 2023 20:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:51:52.165260
- Title: Characterizing Browser Fingerprinting and its Mitigations
- Title(参考訳): ブラウザフィンガープリントの特徴と軽減
- Authors: Alisha Ukani,
- Abstract要約: この研究は、ブラウザのフィンガープリントという、トラッキング技術の1つを探求している。
ブラウザのフィンガープリントの仕組み、それがどの程度普及しているか、どんな防御効果を軽減できるか、などについて詳述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: People are becoming increasingly concerned with their online privacy, especially with how advertising companies track them across websites (a practice called cross-site tracking), as reconstructing a user's browser history can reveal sensitive information. Recent legislation like the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act have tried to limit the extent to which third parties perform cross-site tracking, and browsers have also made tracking more difficult by deprecating the most-common tracking mechanism: third-party cookies. However, online advertising companies continue to track users through other mechanisms that do not rely on cookies. This work explores one of these tracking techniques: browser fingerprinting. We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
- Abstract(参考訳): ユーザのブラウザ履歴の再構築が機密情報を明らかにするため、特に広告会社がWebサイトを横断的に追跡する方法(クロスサイトトラッキングと呼ばれるプラクティス)について、オンラインプライバシに対する関心がますます高まっている。
一般データ保護規則(GDPR)やカリフォルニア州消費者プライバシ法(California Consumer Privacy Act)のような最近の法律は、サードパーティがクロスサイト追跡を行う範囲を制限しようとしている。
しかし、オンライン広告会社はクッキーに依存しない他のメカニズムを通じてユーザーを追跡し続けている。
この研究は、ブラウザのフィンガープリントという、トラッキング技術の1つを探求している。
ブラウザのフィンガープリントの仕組み、それがどの程度普及しているか、どんな防御効果を軽減できるか、などについて詳述する。
関連論文リスト
- PriveShield: Enhancing User Privacy Using Automatic Isolated Profiles in Browsers [3.9251831157293515]
PriveShieldは、情報収集サイクルを妨害する軽量なプライバシーメカニズムである。
評価の結果,これらのシナリオの91%で再ターゲティング広告を防止できる可能性が示唆された。
論文 参考訳(メタデータ) (2025-01-03T20:29:33Z) - FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracerは、元人物の身元を、交換された顔画像やビデオから追跡するように設計されたフレームワークである。
実験では、FaceTracerは元の人物をスワップされたコンテンツで特定し、不正行為に関わる悪意あるアクターの追跡を可能にした。
論文 参考訳(メタデータ) (2024-12-11T04:00:17Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
ブラウザのフィンガープリントは、クッキーのような従来の方法なしでオンラインでユーザーを特定し、追跡するテクニックとして成長している。
本稿では, 各種指紋認証技術について概説し, 収集データのエントロピーと特異性を解析する。
論文 参考訳(メタデータ) (2024-11-18T20:32:31Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
ブラウザのフィンガープリントは、クッキーを使わずとも、Web上のユーザを識別し、追跡するために利用できる。
この技術と結果として生じるプライバシーリスクは10年以上にわたって研究されてきた。
我々は、さらなる研究を可能にするファースト・オブ・ザ・キンド・データセットを提供する。
論文 参考訳(メタデータ) (2024-10-09T14:51:58Z) - The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking [10.98528003128308]
オンライン広告の領域におけるブラウザフィンガープリントの利用に関する懸念の高まりに対処することが不可欠である。
本稿では,ブラウザのフィンガープリント調整による広告変化を分析し,フィンガープリントに基づくユーザトラッキングを評価するフレームワークであるFPTraceを紹介する。
論文 参考訳(メタデータ) (2024-09-24T01:39:16Z) - Keep your Identity Small: Privacy-preserving Client-side Fingerprinting [0.0]
デバイスフィンガープリントは、サードパーティが特定のデバイスを特定するために広く使用されるテクニックである。
最も広く使われている用途の1つは、異なるウェブサイトを訪れているユーザーを特定し、ブラウジング履歴を構築することである。
これは、ユーザのプライバシに脅威をもたらす、特定のタイプのWebトラッキングを構成する。
プライバシ保存型クライアントサイドフィンガープリント(PCF)は,Web上でのデバイスフィンガープリントを可能にすると同時に,Webトラッキングの実行を阻害する新しい手法である。
論文 参考訳(メタデータ) (2023-09-14T09:45:29Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - User Tracking in the Post-cookie Era: How Websites Bypass GDPR Consent
to Track Users [3.936965297430477]
本研究では,クッキーを欲しがらないというユーザを追跡するために,Webサイトが永続的かつ洗練されたトラッキング形式を使用しているかを検討する。
以上の結果から,ユーザがクッキーを登録する以前にも,Webサイトはこのような現代的なトラッキング方式を使用していることが示唆された。
結果として、ユーザーの選択はトラッキングに関してほとんど役に立たない。
論文 参考訳(メタデータ) (2021-02-17T14:11:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。