Quantum-Enhanced Support Vector Machine for Large-Scale Stellar
Classification with GPU Acceleration
- URL: http://arxiv.org/abs/2311.12328v1
- Date: Tue, 21 Nov 2023 03:40:20 GMT
- Title: Quantum-Enhanced Support Vector Machine for Large-Scale Stellar
Classification with GPU Acceleration
- Authors: Kuan-Cheng Chen, Xiaotian Xu, Henry Makhanov, Hui-Hsuan Chung, Chen-Yu
Liu
- Abstract summary: We introduce an innovative Quantum-enhanced Support Vector Machine (QSVM) approach for stellar classification, leveraging the power of quantum computing and GPU acceleration.
Our algorithm significantly surpasses traditional methods such as K-Nearest Neighbors (KNN) and Logistic Regression (LR)
Our findings underscore the transformative potential of quantum machine learning in astronomical research, marking a significant leap forward in both precision and processing speed for stellar classification.
- Score: 2.1374208474242815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we introduce an innovative Quantum-enhanced Support Vector
Machine (QSVM) approach for stellar classification, leveraging the power of
quantum computing and GPU acceleration. Our QSVM algorithm significantly
surpasses traditional methods such as K-Nearest Neighbors (KNN) and Logistic
Regression (LR), particularly in handling complex binary and multi-class
scenarios within the Harvard stellar classification system. The integration of
quantum principles notably enhances classification accuracy, while GPU
acceleration using the cuQuantum SDK ensures computational efficiency and
scalability for large datasets in quantum simulators. This synergy not only
accelerates the processing process but also improves the accuracy of
classifying diverse stellar types, setting a new benchmark in astronomical data
analysis. Our findings underscore the transformative potential of quantum
machine learning in astronomical research, marking a significant leap forward
in both precision and processing speed for stellar classification. This
advancement has broader implications for astrophysical and related scientific
fields
Related papers
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification [0.0]
We present a quantum machine learning model for the diagnosis of Progressive Supranuclear Palsy (PSP) disorder.
The results suggest that quantum machine learning has led to noticeable advancement and outperforms classical frameworks.
In particular, we have demonstrated the successful application of the present model on both a quantum simulator and real chips of the IBM quantum platform.
arXiv Detail & Related papers (2024-07-06T14:16:31Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Machine Learning in the Quantum Age: Quantum vs. Classical Support
Vector Machines [0.0]
This work endeavors to juxtapose the efficacy of machine learning algorithms within classical and quantum computational paradigms.
We scrutinize the classification prowess of classical SVM and Quantum Support Vector Machines operational on quantum hardware over the Iris dataset.
arXiv Detail & Related papers (2023-10-17T01:06:59Z) - Semisupervised Anomaly Detection using Support Vector Regression with
Quantum Kernel [0.0]
Anomaly detection (AD) involves identifying observations or events that deviate in some way from the rest of the data.
This paper introduces an approach to semisupervised AD based on the reconstruction loss of a support vector regression (SVR) with quantum kernel.
It is shown that our SVR model with quantum kernel performs better than the SVR with RBF kernel as well as all other models, achieving highest mean AUC over all data sets.
arXiv Detail & Related papers (2023-08-01T15:00:14Z) - Boosted Ensembles of Qubit and Continuous Variable Quantum Support
Vector Machines for B Meson Flavour Tagging [0.7232471205719458]
We develop and apply quantum machine learning methods to B meson tagging.
We simulate boosted ensembles of quantum support vector machines based on both conventional qubit-based and continuous variable architectures.
We find evidence that continuous variable QSVMs beyond the classically simulable regime may be able to realise even higher performance.
arXiv Detail & Related papers (2023-05-04T11:04:06Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.