Enhanced feature encoding and classification on distributed quantum hardware
- URL: http://arxiv.org/abs/2412.01664v2
- Date: Thu, 12 Dec 2024 14:26:32 GMT
- Title: Enhanced feature encoding and classification on distributed quantum hardware
- Authors: Roberto Moretti, Andrea Giachero, Voica Radescu, Michele Grossi,
- Abstract summary: We propose a novel feature map optimization strategy for Quantum Support Vector Machines (QSVMs)
We take into account backend-specific parameters, including qubit connectivity, native gate sets, and circuit depth, which are critical factors in noisy quantum devices.
The study was carried out by partitioning each quantum processing unit (QPU) into several sub-units with the same topology to implement individual QSVM instances.
- Score: 0.0
- License:
- Abstract: The steady progress of quantum hardware is motivating the search for novel quantum algorithm optimization strategies for near-term, real-world applications. In this study, we propose a novel feature map optimization strategy for Quantum Support Vector Machines (QSVMs), designed to enhance binary classification while taking into account backend-specific parameters, including qubit connectivity, native gate sets, and circuit depth, which are critical factors in noisy intermediate scale quantum (NISQ) devices. The dataset we utilised belongs to the neutrino physics domain, with applications in the search for neutrinoless double beta decay. A key contribution of this work is the parallelization of the classification task to commercially available superconducting quantum hardware to speed up the genetic search processes. The study was carried out by partitioning each quantum processing unit (QPU) into several sub-units with the same topology to implement individual QSVM instances. We conducted parallelization experiments with three IBM backends with more than 100 qubits, ranking the sub-units based on their susceptibility to noise. Data-driven simulations show how, under certain restrictions, parallelized genetic optimization can occur with the tested devices when retaining the top 20% ranked sub-units in the QPU.
Related papers
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Evolutionary-based quantum architecture search [0.0]
We propose an evolutionary-based quantum architecture search (EQAS) scheme for the optimal layout to balance the higher expressive power and the trainable ability.
The results show that the proposed EQAS can search for the optimal QCA with less parameterized gates, and the higher accuracies are obtained by adopting EQAS for the classification tasks over three dataset.
arXiv Detail & Related papers (2022-12-01T10:51:58Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
We investigate quantum support vector machine (QSVM) algorithm and its circuit version on present quantum computers.
We compute the efficiency of the QSVM circuit implementation method by encoding training and testing data sample in quantum circuits.
We highlight the technical difficulties one would face while applying the QSVM algorithm on current NISQ era devices.
arXiv Detail & Related papers (2021-12-13T18:59:39Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.