論文の概要: Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs
- arxiv url: http://arxiv.org/abs/2311.12359v3
- Date: Fri, 5 Jul 2024 06:26:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:42:23.821155
- Title: Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs
- Title(参考訳): ビットの殻:FPGA上のミニフロートによる量子化の境界を押し上げる
- Authors: Shivam Aggarwal, Hans Jakob Damsgaard, Alessandro Pappalardo, Giuseppe Franco, Thomas B. Preußer, Michaela Blott, Tulika Mitra,
- Abstract要約: 後トレーニング量子化(PTQ)はモデル圧縮の強力な技術であり、追加のトレーニングオーバーヘッドなしにニューラルネットワークの数値精度を低下させる。
近年,モデル推論におけるPTQの文脈における8ビット浮動小数点形式(FP8)の適用について検討している。
本稿では,モデルのメモリフットプリント,レイテンシ,エネルギーコストをさらに削減できる,精度の低い浮動小数点形状のミニフロートを提案する。
- 参考スコア(独自算出の注目度): 39.410068572891475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-training quantization (PTQ) is a powerful technique for model compression, reducing the numerical precision in neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point formats(FP8) in the context of PTQ for model inference. However, floating-point formats smaller than 8 bits and their relative comparison in terms of accuracy-hardware cost with integers remains unexplored on FPGAs. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. We implement a custom FPGA-based multiply-accumulate operator library and explore the vast design space, comparing minifloat and integer representations across 3 to 8 bits for both weights and activations. We also examine the applicability of various integerbased quantization techniques to minifloats. Our experiments show that minifloats offer a promising alternative for emerging workloads such as vision transformers.
- Abstract(参考訳): 後トレーニング量子化(PTQ)はモデル圧縮の強力な技術であり、追加のトレーニングオーバーヘッドなしにニューラルネットワークの数値精度を低下させる。
近年,モデル推論におけるPTQの文脈における8ビット浮動小数点形式(FP8)の適用について検討している。
しかし、8ビット未満の浮動小数点フォーマットと、整数に対する精度ハードウェアコストの相対比較はFPGAでは未定である。
そこで本研究では,モデルのメモリフットプリント,レイテンシ,エネルギーコストをさらに低減し,精度の高い浮動小数点形状のミニフロートを提案する。
FPGAベースのマルチプライ累積演算子ライブラリを実装し,重みとアクティベーションの両面で,ミニフロートと整数表現を3ビットから8ビットで比較し,膨大な設計空間を探索する。
また,様々な整数ベースの量子化手法のミニフロートへの適用性についても検討した。
我々の実験によると、ミニフロートはビジョントランスフォーマーのような新しいワークロードに対して有望な代替手段を提供する。
関連論文リスト
- Integer or Floating Point? New Outlooks for Low-Bit Quantization on
Large Language Models [17.055400141733124]
低ビット整数形式(例えばINT8/INT4)は、大規模言語モデル(LLM)の従来の選択肢である。
低ビット浮動小数点フォーマット(例えばFP8/FP4)は魅力的な代替手段であり、NVIDIAのH100 GPUのような最先端ハードウェアからサポートを受けている。
本稿では,階層的に最適なフォーマットを選択するMoFQ(Mixture of Formats Quantization)を提案する。
論文 参考訳(メタデータ) (2023-05-21T05:28:37Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - The case for 4-bit precision: k-bit Inference Scaling Laws [75.4335600212427]
量子化法は、モデル内の各パラメータを表すために必要なビット数を減少させる。
最終的なモデルサイズは、元のモデルのパラメータの数と圧縮率の両方に依存する。
我々は16ビットの入力とkビットのパラメータを持つ35,000以上のゼロショット実験を行い、どの量子化手法が3ビットから8ビットの精度でスケーリングを改善するかを検証した。
論文 参考訳(メタデータ) (2022-12-19T18:48:33Z) - FP8 Quantization: The Power of the Exponent [19.179749424362686]
本稿では,ニューラルネットワーク推論における浮動小数点方式の利点について検討する。
我々はFP8フォーマットで選択できる選択について詳述し、マティーサと指数のビット数の重要な選択を含む。
これらの結果が実際のネットワークにどのように変換され、FP8シミュレーションの効率的な実装と新しいアルゴリズムが提供されるかを示す。
論文 参考訳(メタデータ) (2022-08-19T09:03:00Z) - 8-bit Optimizers via Block-wise Quantization [57.25800395197516]
ステートフルズは、例えば過去の値の指数的滑らかな和(運動量付きSGD)や2乗和(アダム)など、時間の経過とともに統計を維持している。
この状態は、通常の勾配降下よりも最適化を加速するために使用することができるが、そうでなければモデルパラメータに割り当てられる可能性のあるメモリを使用する。
本稿では,32ビットの勾配状態を用いた場合の性能レベルを維持しながら,8ビット統計を用いた第1次勾配法を開発する。
論文 参考訳(メタデータ) (2021-10-06T15:43:20Z) - All-You-Can-Fit 8-Bit Flexible Floating-Point Format for Accurate and
Memory-Efficient Inference of Deep Neural Networks [2.294014185517203]
本稿では,非常にフレキシブルな8ビット浮動小数点 (FFP8) フォーマットを提案する。
複数の代表的な画像分類モデルに対して、0.1%sim 0.3%の極めて低い精度の損失を達成している。
古典的な浮動小数点処理ユニットをFFP8準拠のユニットに変えるのは簡単で、余分なハードウェアコストは小さい。
論文 参考訳(メタデータ) (2021-04-15T09:37:23Z) - EFloat: Entropy-coded Floating Point Format for Deep Learning [2.3204178451683264]
EFloatフォーマットは、平均指数フィールド幅を最小限に抑えるために、Huffman符号で頻繁な指数値を符号化する。
提案した符号化概念は、8ビットフロートを含む低精度フォーマットに有用かもしれない。
論文 参考訳(メタデータ) (2021-02-04T15:58:01Z) - I-BERT: Integer-only BERT Quantization [78.43819756382103]
トランスフォーマーモデルのための新しい量子化手法であるI-BERTを提案する。
I-BERTは浮動小数点演算なしでエンドツーエンドの整数のみのBERT推論を実行する。
いずれの場合も,I-BERTは全精度ベースラインと同等(かつ若干高い)精度が得られた。
論文 参考訳(メタデータ) (2021-01-05T02:42:58Z) - HAWQV3: Dyadic Neural Network Quantization [73.11579145354801]
現在の低精度量子化アルゴリズムは、浮動小数点から量子化された整数値への変換の隠れコストを持つことが多い。
HAWQV3は、新しい混合精度整数のみの量子化フレームワークである。
論文 参考訳(メタデータ) (2020-11-20T23:51:43Z) - Subtensor Quantization for Mobilenets [5.735035463793008]
ディープニューラルネットワーク(DNN)の量子化により、開発者はより少ないメモリとより効率的な低消費電力推論でモデルをデプロイできるようになった。
本稿では,量子化損失の根本原因について分析し,チャネル単位やトレーニング対応のアプローチに依存しない代替案を提案する。
我々は、ImageNetデータセット上の画像分類タスクと、浮動小数点バージョンの0.7%以内で、トレーニング後の量子化8ビット推論トップ1の精度を評価する。
論文 参考訳(メタデータ) (2020-11-04T15:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。