論文の概要: Visual Analytics for Generative Transformer Models
- arxiv url: http://arxiv.org/abs/2311.12418v1
- Date: Tue, 21 Nov 2023 08:15:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:45:10.199678
- Title: Visual Analytics for Generative Transformer Models
- Title(参考訳): 生成変圧器モデルの視覚的解析
- Authors: Raymond Li, Ruixin Yang, Wen Xiao, Ahmed AbuRaed, Gabriel Murray,
Giuseppe Carenini
- Abstract要約: 本稿では,変換器を用いた生成ネットワークの解析を支援するための新しい視覚分析フレームワークを提案する。
我々のフレームワークは、トランスフォーマーベースのエンコーダデコーダモデルの解析をサポートするための最初のフレームワークの1つである。
- 参考スコア(独自算出の注目度): 28.251218916955125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While transformer-based models have achieved state-of-the-art results in a
variety of classification and generation tasks, their black-box nature makes
them challenging for interpretability. In this work, we present a novel visual
analytical framework to support the analysis of transformer-based generative
networks. In contrast to previous work, which has mainly focused on
encoder-based models, our framework is one of the first dedicated to supporting
the analysis of transformer-based encoder-decoder models and decoder-only
models for generative and classification tasks. Hence, we offer an intuitive
overview that allows the user to explore different facets of the model through
interactive visualization. To demonstrate the feasibility and usefulness of our
framework, we present three detailed case studies based on real-world NLP
research problems.
- Abstract(参考訳): トランスフォーマーベースのモデルは様々な分類や生成タスクで最先端の結果を得たが、そのブラックボックスの性質は解釈可能性に挑戦している。
本研究では,変換器を用いた生成ネットワークの解析を支援する新しい視覚解析フレームワークを提案する。
主にエンコーダベースのモデルに焦点を当てた従来の研究とは対照的に,我々のフレームワークは,トランスフォーマベースのエンコーダデコーダモデルとデコーダのみによる生成・分類タスクの分析をサポートするための最初のフレームワークの1つである。
したがって、インタラクティブな可視化を通じてモデルの異なる面を探索できる直感的な概要を提供する。
本フレームワークの有効性と有用性を示すために,実世界のNLP研究問題に基づく3つのケーススタディを提案する。
関連論文リスト
- A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships [0.5639904484784127]
トランスフォーマーモデルによる自然言語処理(NLP)の展望の変化
これらのモデルは、長距離依存やコンテキスト情報をキャプチャする能力で有名である。
コンピュータビジョンにおけるトランスフォーマーモデルの研究の方向性と応用について論じる。
論文 参考訳(メタデータ) (2024-08-27T16:22:18Z) - Evolutive Rendering Models [91.99498492855187]
我々は、レンダリングプロセスを通して、動的に進化し適応する能力を持つレンダリングモデルである、テクスタイトボリューティブレンダリングモデルを提案する。
特に,3つの主要レンダリング要素の最適化を可能にする総合的な学習フレームワークを提案する。
安定な目標指向要素の進化を促進するために, 勾配特性の詳細な解析を行う。
論文 参考訳(メタデータ) (2024-05-27T17:40:00Z) - Transformers and Language Models in Form Understanding: A Comprehensive
Review of Scanned Document Analysis [16.86139440201837]
我々は、スキャンされた文書の文脈におけるフォーム理解のトピックに焦点を当てる。
我々の研究手法は、人気文書の詳細な分析と過去10年間のトレンドの理解の形式に関するものである。
我々は、トランスフォーマーがいかにフィールドを前進させ、フォームアンダード技術に革命をもたらしたかを紹介する。
論文 参考訳(メタデータ) (2024-03-06T22:22:02Z) - Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
制御された抽象的な要約は、特定の側面をカバーするために、ソース記事の凝縮したバージョンを作成することに焦点を当てる。
本稿では,トピックに着目した要約を生成可能なトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-12T03:51:38Z) - OtterHD: A High-Resolution Multi-modality Model [57.16481886807386]
OtterHD-8Bは、高解像度の視覚入力を粒度精度で解釈するために設計された革新的なマルチモーダルモデルである。
本研究は,大規模マルチモーダルモデルにおける柔軟性と高分解能入力能力の重要な役割を明らかにする。
論文 参考訳(メタデータ) (2023-11-07T18:59:58Z) - Understanding Addition in Transformers [2.07180164747172]
本稿では,n桁整数加算を行うために訓練された1層トランスフォーマーモデルの包括的解析を行う。
提案手法は,各桁を対象とする並列ストリームに分割し,各桁の異なる位置に合わせて最適化されたアルゴリズムを用いることを示唆している。
論文 参考訳(メタデータ) (2023-10-19T19:34:42Z) - Counterfactual Edits for Generative Evaluation [0.0]
本稿では,画素の代わりに概念に基づく合成結果の評価と説明のためのフレームワークを提案する。
我々のフレームワークは、どのオブジェクトや属性を挿入、削除、または置き換えるべきかを下記した知識ベースの偽物編集を利用する。
局所的な編集を蓄積したグローバルな説明は、モデルが合計で生成できない概念を明らかにすることもできる。
論文 参考訳(メタデータ) (2023-03-02T20:10:18Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiVizは、解釈可能性の問題を4段階に足場化することで、マルチモーダルモデルの振る舞いを分析する手法である。
MultiVizの相補的な段階は、モデル予測をシミュレートし、機能に解釈可能な概念を割り当て、モデル誤分類のエラー解析を行い、エラー解析からモデルデバッグへの洞察を利用することを可能にする。
論文 参考訳(メタデータ) (2022-06-30T18:42:06Z) - T3-Vis: a visual analytic framework for Training and fine-Tuning
Transformers in NLP [0.0]
本稿では,研究者を支援する視覚分析フレームワークの設計と実装について述べる。
我々のフレームワークは、ユーザーがモデルの異なる面を探索できる直感的な概要を提供する。
これは、モデルコンポーネントと入力シーケンスの異なる部分の重要性を計算する組込みアルゴリズム群を可能にする。
論文 参考訳(メタデータ) (2021-08-31T02:20:46Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。