論文の概要: Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment
- arxiv url: http://arxiv.org/abs/2501.03012v1
- Date: Mon, 06 Jan 2025 13:37:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:10:06.242385
- Title: Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment
- Title(参考訳): マルチモーダルLLMのステアリングアライメントのための微調整表現シフトの解析
- Authors: Pegah Khayatan, Mustafa Shukor, Jayneel Parekh, Matthieu Cord,
- Abstract要約: モデルの内部構造が微調整によってどのように変化し、新しいマルチモーダルタスクを専門化するかを示す。
我々の研究は、微調整によってマルチモーダル表現がどのように進化するかに光を当て、マルチモーダルタスクにおけるモデル適応を解釈するための新しい視点を提供する。
- 参考スコア(独自算出の注目度): 53.90425382758605
- License:
- Abstract: Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.
- Abstract(参考訳): マルチモーダル LLM は、マルチモーダル入力の理解において卓越した習熟度に達し、より強力なモデルを開発するための広範な研究を推進している。
しかし、これらのモデルの基礎となるメカニズムを理解し説明するためには、はるかに注意が払われていない。
既存の説明可能性研究は、これらのモデルを最終状態でのみ調べ、トレーニング中に発生する動的表現的シフトを見越す。
本研究では,隠れ状態表現の進化を系統的に解析し,新しいマルチモーダルタスクを専門とするモデルの内部構造が微調整によってどのように変化するかを明らかにする。
概念に基づくアプローチを用いて、隠れた状態を視覚的およびテキスト的概念の解釈にマッピングし、トレーニングが進むにつれて、モダリティを越えて符号化された概念の変化を追跡できるようにする。
また,これらの変化を捉えるためにシフトベクトルを用いることを実証する。
これらのシフトベクトルは、元のモデルでそれらをシフトすることで、微調整された概念を復元することができる。
最後に,モデルステアリングにおける本研究の実践的影響について検討し,回答タイプの変更やキャプションスタイルの変更,あるいは特定の応答に対するモデル偏見などのトレーニングを行なわずに,マルチモーダルLLMの動作を調整することができることを示した。
我々の研究は、微調整によってマルチモーダル表現がどのように進化するかに光を当て、マルチモーダルタスクにおけるモデル適応を解釈するための新しい視点を提供する。
このプロジェクトのコードはhttps://github.com/mshukor/xl-vlms.comで公開されている。
関連論文リスト
- The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights [10.777646083061395]
本稿では,大規模言語モデルにおける概念化機構を明らかにする知識編集の革新的バリエーションである概念編集を紹介する。
我々は、トランスモデルのマルチ層パーセプトロン(MLP)、マルチヘッドアテンション(MHA)、および隠れ状態成分を解析する。
我々の研究は、LLMにおける複雑な階層化されたセマンティック処理の性質と、これらのモデルにおける特定の概念の分離と修正の課題を強調している。
論文 参考訳(メタデータ) (2024-08-05T18:50:08Z) - A Concept-Based Explainability Framework for Large Multimodal Models [52.37626977572413]
本稿では,トークン表現に適用した辞書学習に基づくアプローチを提案する。
これらの概念は、視覚とテキストの両方に意味論的に根ざしていることを示す。
抽出したマルチモーダル概念は,テストサンプルの表現の解釈に有用であることを示す。
論文 参考訳(メタデータ) (2024-06-12T10:48:53Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
本稿では,既存モデルのマルチモーダル能力を向上するための新しいアプローチを提案する。
提案したモデルであるVeagleは、以前の作品の成功と洞察にインスパイアされたユニークなメカニズムを取り入れています。
以上の結果から,Veagleは既存のモデルよりも優れた性能を示し,性能は5-6%向上した。
論文 参考訳(メタデータ) (2024-01-18T12:45:25Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiVizは、解釈可能性の問題を4段階に足場化することで、マルチモーダルモデルの振る舞いを分析する手法である。
MultiVizの相補的な段階は、モデル予測をシミュレートし、機能に解釈可能な概念を割り当て、モデル誤分類のエラー解析を行い、エラー解析からモデルデバッグへの洞察を利用することを可能にする。
論文 参考訳(メタデータ) (2022-06-30T18:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。