論文の概要: Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction
- arxiv url: http://arxiv.org/abs/2311.12472v3
- Date: Fri, 03 Jan 2025 02:19:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:09:53.025039
- Title: Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction
- Title(参考訳): 目に見えないものを見る:学習ベーシコンジェネレーションによるロバスト交通予測の表現
- Authors: Jiahao Ji, Wentao Zhang, Jingyuan Wang, Yue He, Chao Huang,
- Abstract要約: 交通予測はインテリジェント交通システムと都市コンピューティングにとって不可欠である。
各種統計・深層学習手法を用いて, 過去の交通データXと将来の交通状況Yの関係を確立することを目的とする。
X -> Y の関係は、しばしば X と Y の両方に同時に影響を与える外部共同設立者の影響を受けている。
既存のディープラーニングトラフィック予測モデルでは、共同創業者の問題に対処するために、古典的なフロントドアとバックドアの調整が採用されている。
- 参考スコア(独自算出の注目度): 44.832747095982434
- License:
- Abstract: Traffic prediction is essential for intelligent transportation systems and urban computing. It aims to establish a relationship between historical traffic data X and future traffic states Y by employing various statistical or deep learning methods. However, the relations of X -> Y are often influenced by external confounders that simultaneously affect both X and Y , such as weather, accidents, and holidays. Existing deep-learning traffic prediction models adopt the classic front-door and back-door adjustments to address the confounder issue. However, these methods have limitations in addressing continuous or undefined confounders, as they depend on predefined discrete values that are often impractical in complex, real-world scenarios. To overcome this challenge, we propose the Spatial-Temporal sElf-superVised confoundEr learning (STEVE) model. This model introduces a basis vector approach, creating a base confounder bank to represent any confounder as a linear combination of a group of basis vectors. It also incorporates self-supervised auxiliary tasks to enhance the expressive power of the base confounder bank. Afterward, a confounder-irrelevant relation decoupling module is adopted to separate the confounder effects from direct X -> Y relations. Extensive experiments across four large-scale datasets validate our model's superior performance in handling spatial and temporal distribution shifts and underscore its adaptability to unseen confounders. Our model implementation is available at https://github.com/bigscity/STEVE_CODE.
- Abstract(参考訳): 交通予測はインテリジェント交通システムと都市コンピューティングにとって不可欠である。
各種統計・深層学習手法を用いて, 過去の交通データXと将来の交通状況Yの関係を確立することを目的とする。
しかしながら、X -> Yの関係はしばしば、天気、事故、休日など、XとYの両方に同時に影響を与える外部共同創設者の影響を受けている。
既存のディープラーニングトラフィック予測モデルでは、共同創業者の問題に対処するために、古典的なフロントドアとバックドアの調整が採用されている。
しかし、これらの手法は、しばしば複雑で現実的なシナリオで非現実的な事前定義された離散的な値に依存するため、連続的または未定義の共同創業者に対処する際の制限がある。
この課題を克服するために,STEVE(Spatial-Temporal sElf-superVised confoundEr learning)モデルを提案する。
このモデルは基底ベクトルアプローチを導入し、基底ベクトル群の線形結合として任意の共同設立者を表現するための基礎共同設立銀行を作成する。
また、基礎的共同設立銀行の表現力を高めるために、自己監督型補助業務も取り入れている。
その後、共同設立者関係分離モジュールを用いて、共同設立効果を直接X->Y関係から分離する。
4つの大規模データセットにわたる大規模な実験は、空間的および時間的分布シフトを扱う上で、我々のモデルの優れたパフォーマンスを検証し、目に見えない共同設立者への適応性を強調します。
我々のモデル実装はhttps://github.com/bigscity/STEVE_CODE.comで利用可能です。
関連論文リスト
- A Time Series is Worth Five Experts: Heterogeneous Mixture of Experts for Traffic Flow Prediction [9.273632869779929]
本稿では,交通流予測のためのヘテロジニアス・ミックス・オブ・エキスパート(TITAN)モデルを提案する。
2つのパブリックトラフィックネットワークデータセットであるMETR-LAとP-BAYの実験では、TITANが変数中心の依存関係を効果的にキャプチャすることを示した。
従来のSOTAモデルと比較して、約4.37%から11.53%までのすべての評価指標の改善を実現している。
論文 参考訳(メタデータ) (2024-09-26T00:26:47Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Semantic-Fused Multi-Granularity Cross-City Traffic Prediction [17.020546413647708]
本研究では,異なる粒度で融合した意味を持つ都市間における知識伝達を実現するためのセマンティック・フューズド・マルチグラニュラリティ・トランスファー・ラーニング・モデルを提案する。
本稿では,静的な空間依存を保ちながら,様々な意味を融合する意味融合モジュールを設計する。
STLモデルの有効性を検証するため、6つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-23T04:26:34Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
我々は,グラフ畳み込みネットワーク(GCN)を設計して,革新的な関係予測手法であるDeepWORDを提案する。
実験の結果,提案手法が最先端の精度と実時間性能を達成できることが判明した。
論文 参考訳(メタデータ) (2022-01-28T13:12:27Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。