論文の概要: Continuous Visual Autoregressive Generation via Score Maximization
- arxiv url: http://arxiv.org/abs/2505.07812v1
- Date: Mon, 12 May 2025 17:58:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.535351
- Title: Continuous Visual Autoregressive Generation via Score Maximization
- Title(参考訳): スコア最大化による連続的視覚自己回帰生成
- Authors: Chenze Shao, Fandong Meng, Jie Zhou,
- Abstract要約: 本稿では,ベクトル量子化なしで直接視覚的自己回帰生成を可能にする連続VARフレームワークを提案する。
このフレームワークの中で必要なのは、厳密な適切なスコアを選択し、最適化のトレーニング目標として設定することだけです。
- 参考スコア(独自算出の注目度): 69.67438563485887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.
- Abstract(参考訳): 従来の知恵は、自己回帰モデルは離散データを処理するために使用されることを示唆している。
視覚データなどの連続的なモダリティに適用する場合、Visual AutoRegressive Modeling (VAR) は通常、データを離散空間にキャストする量子化ベースのアプローチを採用し、重要な情報損失をもたらす。
この問題に対処するために,ベクトル量子化なしで直接視覚的自己回帰生成を可能にするContinuous VARフレームワークを導入する。
基礎となる理論基盤は厳密な適切なスコアリングルールであり、生成モデルが真の分布をいかにうまく近似するかを評価することのできる強力な統計ツールを提供する。
このフレームワークの中で必要なのは、厳密な適切なスコアを選択し、最適化のトレーニング目標として設定することだけです。
主に、エネルギースコアに基づく訓練目標のクラスを探索し、これは可能性のないため、連続空間における確率的予測の難しさを克服する。
GIVTや拡散損失などの連続自己回帰生成に対する従来の取り組みも,他の厳密なスコアを用いて,我々の枠組みから導出することができる。
ソースコードはhttps://github.com/shaochenze/EAR。
関連論文リスト
- Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
本稿では, モデルが生成したデータ上での予測が時間とともに一定であることを示す, 両立性特性を強制することを提案する。
CIFAR-10の条件および非条件生成とAFHQとFFHQのベースライン改良について,本研究の新たな訓練目標が得られた。
論文 参考訳(メタデータ) (2023-02-17T18:45:04Z) - Can we achieve robustness from data alone? [0.7366405857677227]
敵の訓練とその変種は、ニューラルネットワークを用いた敵の堅牢な分類を実現するための一般的な方法となっている。
そこで我々は,ロバストな分類のためのメタラーニング手法を考案し,その展開前のデータセットを原則的に最適化する。
MNIST と CIFAR-10 の実験により、我々が生成するデータセットはPGD 攻撃に対して非常に高い堅牢性を持つことが示された。
論文 参考訳(メタデータ) (2022-07-24T12:14:48Z) - Infinite-Fidelity Coregionalization for Physical Simulation [22.524773932668023]
多要素モデリングと学習は、物理シミュレーション関連の応用において重要である。
Infinite Fidelity Co Regionalalization (IFC) を提案する。
計算物理学におけるいくつかのベンチマークタスクにおいて,本手法の利点を示す。
論文 参考訳(メタデータ) (2022-07-01T23:01:10Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDEは自己回帰密度推定のための自己アテンションに基づくアーキテクチャである。
本稿では, 生成したサンプルを用いた回帰, 分布外検出, トレーニングデータにおける雑音に対する頑健性などのタスクについて述べる。
論文 参考訳(メタデータ) (2020-04-06T07:32:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。