論文の概要: Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction
- arxiv url: http://arxiv.org/abs/2311.12472v4
- Date: Mon, 13 Jan 2025 00:43:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 21:19:24.510115
- Title: Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction
- Title(参考訳): 目に見えないものを見る:学習ベーシコンジェネレーションによるロバスト交通予測の表現
- Authors: Jiahao Ji, Wentao Zhang, Jingyuan Wang, Chao Huang,
- Abstract要約: 交通予測はインテリジェント交通システムと都市コンピューティングにとって不可欠である。
各種統計・深層学習手法を用いて, 過去の交通データXと将来の交通状況Yの関係を確立することを目的とする。
X -> Y の関係は、しばしば X と Y の両方に同時に影響を与える外部共同設立者の影響を受けている。
既存のディープラーニングトラフィック予測モデルでは、共同創業者の問題に対処するために、古典的なフロントドアとバックドアの調整が採用されている。
- 参考スコア(独自算出の注目度): 41.59726314922999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic prediction is essential for intelligent transportation systems and urban computing. It aims to establish a relationship between historical traffic data X and future traffic states Y by employing various statistical or deep learning methods. However, the relations of X -> Y are often influenced by external confounders that simultaneously affect both X and Y , such as weather, accidents, and holidays. Existing deep-learning traffic prediction models adopt the classic front-door and back-door adjustments to address the confounder issue. However, these methods have limitations in addressing continuous or undefined confounders, as they depend on predefined discrete values that are often impractical in complex, real-world scenarios. To overcome this challenge, we propose the Spatial-Temporal sElf-superVised confoundEr learning (STEVE) model. This model introduces a basis vector approach, creating a base confounder bank to represent any confounder as a linear combination of a group of basis vectors. It also incorporates self-supervised auxiliary tasks to enhance the expressive power of the base confounder bank. Afterward, a confounder-irrelevant relation decoupling module is adopted to separate the confounder effects from direct X -> Y relations. Extensive experiments across four large-scale datasets validate our model's superior performance in handling spatial and temporal distribution shifts and underscore its adaptability to unseen confounders. Our model implementation is available at https://github.com/bigscity/STEVE_CODE.
- Abstract(参考訳): 交通予測はインテリジェント交通システムと都市コンピューティングにとって不可欠である。
各種統計・深層学習手法を用いて, 過去の交通データXと将来の交通状況Yの関係を確立することを目的とする。
しかしながら、X -> Yの関係はしばしば、天気、事故、休日など、XとYの両方に同時に影響を与える外部共同創設者の影響を受けている。
既存のディープラーニングトラフィック予測モデルでは、共同創業者の問題に対処するために、古典的なフロントドアとバックドアの調整が採用されている。
しかし、これらの手法は、しばしば複雑で現実的なシナリオで非現実的な事前定義された離散的な値に依存するため、連続的または未定義の共同創業者に対処する際の制限がある。
この課題を克服するために,STEVE(Spatial-Temporal sElf-superVised confoundEr learning)モデルを提案する。
このモデルは基底ベクトルアプローチを導入し、基底ベクトル群の線形結合として任意の共同設立者を表現するための基礎共同設立銀行を作成する。
また、基礎的共同設立銀行の表現力を高めるために、自己監督型補助業務も取り入れている。
その後、共同設立者関係分離モジュールを用いて、共同設立効果を直接X->Y関係から分離する。
4つの大規模データセットにわたる大規模な実験は、空間的および時間的分布シフトを扱う上で、我々のモデルの優れたパフォーマンスを検証し、目に見えない共同設立者への適応性を強調します。
我々のモデル実装はhttps://github.com/bigscity/STEVE_CODE.comで利用可能です。
関連論文リスト
- Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
16時間から8192時間に及ぶ内部駆動データセット上での簡易エンド・ツー・エンド駆動アーキテクチャの性能評価を行った。
具体的には、目標の性能向上を達成するために、どの程度のトレーニングデータが必要かを調査する。
論文 参考訳(メタデータ) (2025-04-06T03:23:48Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - A Time Series is Worth Five Experts: Heterogeneous Mixture of Experts for Traffic Flow Prediction [9.273632869779929]
本稿では,交通流予測のためのヘテロジニアス・ミックス・オブ・エキスパート(TITAN)モデルを提案する。
2つのパブリックトラフィックネットワークデータセットであるMETR-LAとP-BAYの実験では、TITANが変数中心の依存関係を効果的にキャプチャすることを示した。
従来のSOTAモデルと比較して、約4.37%から11.53%までのすべての評価指標の改善を実現している。
論文 参考訳(メタデータ) (2024-09-26T00:26:47Z) - FASTopic: Pretrained Transformer is a Fast, Adaptive, Stable, and Transferable Topic Model [76.509837704596]
本稿では,高速で適応的で,安定で,移動可能なトピックモデルであるFASTopicを提案する。
我々はDSR(Dual Semantic-Relation Reconstruction)を用いて潜在トピックをモデル化する。
また, セマンティック関係を最適輸送計画として正規化するためのETP(Embedding Transport Plan)を提案する。
論文 参考訳(メタデータ) (2024-05-28T09:06:38Z) - FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction [22.265095967530296]
FlashSTは、トレーニング済みのモデルに適応して、さまざまなデータセットの特定の特性を一般化するフレームワークである。
事前トレーニングとダウンストリームデータのシフトを捉え、さまざまなシナリオへの効果的な適応を促進する。
実証的な評価は、さまざまなシナリオにおけるFlashSTの有効性を示している。
論文 参考訳(メタデータ) (2024-05-28T07:18:52Z) - Multi-Factor Spatio-Temporal Prediction based on Graph Decomposition
Learning [31.812810009108684]
本稿では,様々な要因の下で部分的なSTデータの進化を予測する多要素ST予測タスクを提案する。
多要素ST予測のための新しいモデル非依存フレームワークである分解グラフ学習(STGDL)を創出する。
その結果,様々なSTモデルの予測誤差を平均9.41%削減できることがわかった。
論文 参考訳(メタデータ) (2023-10-16T13:12:27Z) - Spatio-Temporal Contrastive Self-Supervised Learning for POI-level Crowd
Flow Inference [23.8192952068949]
S-temporal data(CSST)のための新しいコントラスト型自己学習フレームワークを提案する。
提案手法は,POI(Points of Interest)とその距離に基づく空間隣接グラフの構築から始める。
我々は、類似した事例から対象部分グラフの表現を予測するために、スワップした予測手法を採用する。
実世界の2つのデータセットで実施した実験では、広範囲のノイズデータに基づいて事前トレーニングされたCSSTが、ゼロからトレーニングされたモデルより一貫して優れていることを示した。
論文 参考訳(メタデータ) (2023-09-06T02:51:24Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Semantic-Fused Multi-Granularity Cross-City Traffic Prediction [17.020546413647708]
本研究では,異なる粒度で融合した意味を持つ都市間における知識伝達を実現するためのセマンティック・フューズド・マルチグラニュラリティ・トランスファー・ラーニング・モデルを提案する。
本稿では,静的な空間依存を保ちながら,様々な意味を融合する意味融合モジュールを設計する。
STLモデルの有効性を検証するため、6つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-23T04:26:34Z) - Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction [36.77135502344546]
本稿では,新しいST-SSL(Spatio-Supervised Learning)トラフィック予測フレームワークを提案する。
我々のST-SSLは、時空間の畳み込みによって、空間と時間にまたがる情報を符号化する統合モジュール上に構築されている。
4つのベンチマークデータセットの実験では、ST-SSLは様々な最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2022-12-07T10:02:01Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
我々は,グラフ畳み込みネットワーク(GCN)を設計して,革新的な関係予測手法であるDeepWORDを提案する。
実験の結果,提案手法が最先端の精度と実時間性能を達成できることが判明した。
論文 参考訳(メタデータ) (2022-01-28T13:12:27Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - ProSTformer: Pre-trained Progressive Space-Time Self-attention Model for
Traffic Flow Forecasting [6.35012051925346]
2つの問題により、交通流の予測にアプローチが効果的に適用されない。
まず、依存関係を判断し、次に、ProSTformerという時空の自己アテンションメカニズムを取ります。
ProSTformerは、RMSEの6つの最先端メソッドよりも、大規模なデータセット上で、より良く、あるいは同等に動作する。
論文 参考訳(メタデータ) (2021-11-03T12:20:08Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。