論文の概要: Hyena: Optimizing Homomorphically Encrypted Convolution for Private CNN Inference
- arxiv url: http://arxiv.org/abs/2311.12519v1
- Date: Tue, 21 Nov 2023 10:53:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 13:26:22.773006
- Title: Hyena: Optimizing Homomorphically Encrypted Convolution for Private CNN Inference
- Title(参考訳): Hyena: プライベートCNN推論のための同型暗号化コンボリューションの最適化
- Authors: Hyeri Roh, Woo-Seok Choi,
- Abstract要約: 同型畳み込みアルゴリズムは、スピードアップ、通信コスト、ストレージの節約を提供する。
エンドツーエンドのレイテンシを1.3-2.6x、メモリ使用率を2.1-7.9x、通信コストを1.7-2.0x削減する。
- 参考スコア(独自算出の注目度): 1.4548651568912525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing convolution layers remains a huge bottleneck for private deep convolutional neural network (CNN) inference for large datasets. To solve this issue, this paper presents a novel homomorphic convolution algorithm that provides speedup, communication cost, and storage saving. We first note that padded convolution provides the advantage of model storage saving, but it does not support channel packing, thereby increasing the amount of computation and communication. We address this limitation by proposing a novel plaintext multiplication algorithm using the Walsh-Hadamard matrix. Furthermore, we propose the optimization techniques to significantly reduce the latency of the proposed convolution by selecting the optimal encryption parameters and applying lazy reduction. It achieves 1.6-3.8x speedup and reduces the weight storage by 2000-8000x compared to the conventional convolution. When the proposed convolution is employed for CNNs like VGG-16, ResNet-20, and MobileNetV1 on ImageNet, it reduces the end-to-end latency by 1.3-2.6x, the memory usage by 2.1-7.9x and communication cost by 1.7-2.0x compared to conventional method.
- Abstract(参考訳): 畳み込み層を処理することは、大規模なデータセットに対するプライベートディープ畳み込みニューラルネットワーク(CNN)の推論において、依然として大きなボトルネックとなっている。
そこで本稿では, 高速化, 通信コスト, ストレージを節約できる新しい同型畳み込みアルゴリズムを提案する。
最初に、パッドド・コンボリューションはモデルストレージの利点を提供するが、チャネルパッキングをサポートせず、計算量や通信量が増加することに留意する。
本稿では,Walsh-Hadamard行列を用いた新しい平文乗算アルゴリズムを提案する。
さらに、最適な暗号化パラメータを選択し、遅延削減を適用することにより、提案する畳み込みの遅延を著しく低減する最適化手法を提案する。
1.6-3.8倍のスピードアップを達成し、従来の畳み込みに比べて2000-8000倍の重量貯蔵を実現する。
ImageNet上のVGG-16、ResNet-20、MobileNetV1などのCNNで提案された畳み込みは、エンドツーエンドのレイテンシを1.3-2.6x、メモリ使用率を2.1-7.9x、通信コストを1.7-2.0x削減する。
関連論文リスト
- Efficient Latency-Aware CNN Depth Compression via Two-Stage Dynamic
Programming [15.458305667190256]
本稿では,一般的な畳み込み操作を対象とする新しい深度圧縮アルゴリズムを提案する。
ImageNetのMobileNetV2-1.0では、0.11%の精度で1.41タイムのスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-01-28T13:08:54Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
メモリボトルネックは畳み込みニューラルネットワーク(CNN)の設計における不均衡なメモリ分布に起因する。
本稿では,ピークメモリを大幅に削減するパッチ・バイ・パッチ・推論スケジューリングを提案する。
ニューラルアーキテクチャサーチによるプロセスを自動化し、ニューラルアーキテクチャと推論スケジューリングを共同で最適化し、MCUNetV2に導いた。
論文 参考訳(メタデータ) (2021-10-28T17:58:45Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - Content-Aware Convolutional Neural Networks [98.97634685964819]
畳み込みニューラルネットワーク(CNN)は、畳み込み層の強力な特徴学習能力によって大きな成功を収めている。
本研究では,スムーズなウィンドウを自動的に検出し,元の大規模カーネルを置き換えるために1x1畳み込みカーネルを適用するContent-aware Convolution (CAC)を提案する。
論文 参考訳(メタデータ) (2021-06-30T03:54:35Z) - Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions [11.769185588579488]
本稿では,アクセル実装に適した特性とともに,メモリ消費と遅延を低減した最先端性能を示す。
提案手法は,エッジ数に比例するメモリを必要とする競合手法とは対照的に,グラフ内の頂点数に比例するメモリを用いる。
GNNが表現力を大幅に高める技術であるアグリゲーター融合を提案し、標準のスパース行列乗算よりも19%の遅延がわずかに増加している。
論文 参考訳(メタデータ) (2021-04-03T20:54:36Z) - Revisiting Dynamic Convolution via Matrix Decomposition [81.89967403872147]
チャネル群に対する動的注意を置き換える動的チャネル融合を提案する。
本手法は訓練が容易で,精度を犠牲にすることなくパラメータを著しく削減する。
論文 参考訳(メタデータ) (2021-03-15T23:03:18Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
モバイルデバイス上の畳み込みニューラルネットワーク(CNN)推論は、低精度(INT8)汎用行列乗算(GEMM)の効率的なハードウェアアクセラレーションを必要とする
CNN推論のGEMMをさらに加速する一般的な手法であり、特に、構造的スパーシリティは予測可能な負荷分散と非常に低いインデックスオーバーヘッドの利点がある。
ハードウェアの高利用を保ちながら、さまざまな分散レベルのサポートを提供する方法について、構造的疎結合で重要なアーキテクチャ上の課題に対処する。
論文 参考訳(メタデータ) (2020-09-04T20:17:42Z) - Efficient Integer-Arithmetic-Only Convolutional Neural Networks [87.01739569518513]
我々は従来のReLUを境界ReLUに置き換え、その減少は活性化量子化によるものであることを示す。
我々の整数ネットワークは、対応するFPNネットワークと同等の性能を発揮するが、メモリコストは1/4に過ぎず、最新のGPUでは2倍高速である。
論文 参考訳(メタデータ) (2020-06-21T08:23:03Z) - MUXConv: Information Multiplexing in Convolutional Neural Networks [25.284420772533572]
MUXConvは、ネットワーク内のチャンネルと空間情報を段階的に多重化することで、情報の流れを増大させるように設計されている。
ImageNetでは、MUXNetsと呼ばれる結果のモデルが、MobileNetV3のパフォーマンス(75.3%のトップ-1精度)と乗算演算(218M)に一致している。
MUXNetは、転送学習やオブジェクト検出に適応する際にもよく機能する。
論文 参考訳(メタデータ) (2020-03-31T00:09:47Z) - XSepConv: Extremely Separated Convolution [60.90871656244126]
極めて分離された畳み込みブロック(XSepConv)を提案する。
空間的に分離可能な畳み込みを奥行きの畳み込みに融合させ、大きなカーネルの計算コストとパラメータサイズの両方を削減する。
XSepConvは、大規模なカーネルサイズを持つバニラ奥行きの畳み込みの効率的な代替として設計されている。
論文 参考訳(メタデータ) (2020-02-27T11:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。