論文の概要: Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2311.12630v1
- Date: Tue, 21 Nov 2023 14:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:13:58.304427
- Title: Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting
- Title(参考訳): 階層型ジョイントグラフ学習と多変量時系列予測
- Authors: Juhyeon Kim, Hyungeun Lee, Seungwon Yu, Ung Hwang, Wooyul Jung, Miseon
Park, Kijung Yoon
- Abstract要約: 本稿では,相互依存を示すエッジを持つグラフにおいて,多変量信号をノードとして表現する方法を提案する。
我々はグラフニューラルネットワーク(GNN)とアテンションメカニズムを活用し、時系列データ内の基礎となる関係を効率的に学習する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
- 参考スコア(独自算出の注目度): 0.16492989697868887
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series is prevalent in many scientific and industrial
domains. Modeling multivariate signals is challenging due to their long-range
temporal dependencies and intricate interactions--both direct and indirect. To
confront these complexities, we introduce a method of representing multivariate
signals as nodes in a graph with edges indicating interdependency between them.
Specifically, we leverage graph neural networks (GNN) and attention mechanisms
to efficiently learn the underlying relationships within the time series data.
Moreover, we suggest employing hierarchical signal decompositions running over
the graphs to capture multiple spatial dependencies. The effectiveness of our
proposed model is evaluated across various real-world benchmark datasets
designed for long-term forecasting tasks. The results consistently showcase the
superiority of our model, achieving an average 23\% reduction in mean squared
error (MSE) compared to existing models.
- Abstract(参考訳): 多変量時系列は、多くの科学領域や産業領域で一般的である。
多変量信号のモデリングは、その長距離時間依存性と複雑な相互作用により困難である。
これらの複雑さに対処するため,グラフ内の多変量信号をノードとして表現する方法を提案する。
具体的には,グラフニューラルネットワーク(gnn)とアテンション機構を利用して時系列データ内の基礎的関係を効率的に学習する。
さらに,複数の空間依存性を捉えるために,グラフ上で実行される階層的信号分解を用いることを提案する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
その結果,従来モデルと比較して平均二乗誤差 (mse) が平均23\%減少する結果が得られた。
関連論文リスト
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
本研究では,多変量時系列異常検出のためのエントロピー因果グラフであるCGADを提案する。
CGADは転送エントロピーを利用して時系列データ間の因果関係を明らかにするグラフ構造を構築する。
CGADは、15%の平均的な改善で、実世界のデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-12-15T01:35:00Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
多変量時系列データにおける異常検出のためのアテンションベースニューラルネットワークフレームワーク(CAN)を提案する。
センサ間の関係と時間的依存関係をキャプチャするために、グローバルローカルグラフに基づく畳み込みニューラルネットワークを時間的自己認識モジュールに統合する。
論文 参考訳(メタデータ) (2023-06-12T13:42:56Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
多変量時系列の異常検出は、データマイニング研究と産業応用の両方において非常に重要である。
1つの大きな制限は、異なる時系列間の関係を明示的に捉えないことである。
この問題に対処するために,多変量時系列異常検出のための新しい自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-04T07:46:19Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。