論文の概要: Similar Document Template Matching Algorithm
- arxiv url: http://arxiv.org/abs/2311.12663v1
- Date: Tue, 21 Nov 2023 15:13:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:01:22.278067
- Title: Similar Document Template Matching Algorithm
- Title(参考訳): 類似文書テンプレートマッチングアルゴリズム
- Authors: Harshitha Yenigalla, Bommareddy Revanth Srinivasa Reddy, Batta Venkata
Rahul and Nannapuraju Hemanth Raju
- Abstract要約: 本研究は,医療文書の総合的検証手法について概説する。
テンプレート抽出、比較、不正検出に高度な技術が組み込まれている。
この手法は、医用文書検証に対する堅牢なアプローチを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study outlines a comprehensive methodology for verifying medical
documents, integrating advanced techniques in template extraction, comparison,
and fraud detection. It begins with template extraction using sophisticated
region-of-interest (ROI) methods, incorporating contour analysis and edge
identification. Pre-processing steps ensure template clarity through
morphological operations and adaptive thresholding. The template comparison
algorithm utilizes advanced feature matching with key points and descriptors,
enhancing robustness through histogram-based analysis for accounting
variations. Fraud detection involves the SSIM computation and OCR for textual
information extraction. The SSIM quantifies structural similarity, aiding in
potential match identification. OCR focuses on critical areas like patient
details, provider information, and billing amounts. Extracted information is
compared with a reference dataset, and confidence thresholding ensures reliable
fraud detection. Adaptive parameters enhance system flexibility for dynamic
adjustments to varying document layouts. This methodology provides a robust
approach to medical document verification, addressing complexities in template
extraction, comparison, fraud detection, and adaptability to diverse document
structures.
- Abstract(参考訳): 本研究では,医用文書の検証,テンプレート抽出,比較,不正検出に高度な手法を取り入れた総合的な方法論を概説する。
テンプレート抽出は、輪郭解析とエッジ識別を取り入れた、洗練された関心領域(ROI)手法で開始される。
事前処理のステップは、モルフォロジー操作と適応しきい値設定によるテンプレートの明確性を保証する。
テンプレート比較アルゴリズムは、キーポイントとディスクリプタとの高度な特徴マッチングを利用して、会計変動のヒストグラムに基づく分析によりロバスト性を高める。
不正検出には、テキスト情報抽出のためのSSIM計算とOCRが含まれる。
SSIMは構造的類似性を定量化し、潜在的な一致同定を支援する。
OCRは患者の詳細、提供者情報、請求額などの重要な領域に焦点を当てている。
抽出された情報を基準データセットと比較し、信頼しきい値が信頼できる不正検出を保証する。
適応パラメータは、動的調整のためのシステムの柔軟性を高める。
この手法は, 医用文書の検証, テンプレート抽出, 比較, 不正検出, 各種文書構造への適応性などの複雑さに対処する。
関連論文リスト
- Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods [0.0]
本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
オープンソースのモデルを用いて,質問対と回答対の包括的データセットを生成する新しい評価手法を提案する。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
論文 参考訳(メタデータ) (2024-09-13T02:08:47Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
本研究の目的は,ボックス,ポイント,テキストなど,さまざまなプロンプト型で示されるオブジェクトの密度マップを生成することができる包括的プロンプトベースのカウントフレームワークを確立することである。
本モデルは,クラスに依存しない顕著なデータセットに優れ,データセット間の適応タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T12:05:44Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
我々は,臨床用PDF文書を処理し,臨床用テキストのみを抽出するアルゴリズムを設計した。
このアルゴリズムは、PDFを使った最初のテキスト抽出と、続いてボディテキスト、左書き、フッタなどのカテゴリに分類される。
それぞれのセクションのテキストから興味ある医学的概念を抽出し,医療的パフォーマンスを評価した。
論文 参考訳(メタデータ) (2023-05-23T08:38:33Z) - Identity Documents Authentication based on Forgery Detection of
Guilloche Pattern [2.606834301724095]
ギロシェパターンの偽造検出に基づく識別文書の認証モデルを提案する。
認証性能を高めるために、最も適切なパラメータを分析し、識別するために実験を行う。
論文 参考訳(メタデータ) (2022-06-22T11:37:10Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Automating Document Classification with Distant Supervision to Increase
the Efficiency of Systematic Reviews [18.33687903724145]
体系的なレビューは高価で、時間的需要があり、労働集約的です。
文書のレビュー作業を大幅に削減するための自動文書分類アプローチを提案します。
論文 参考訳(メタデータ) (2020-12-09T22:45:40Z) - Extracting Procedural Knowledge from Technical Documents [1.0773368566852943]
手続きは、自動化、質問応答、会話の推進のために認知アシスタントが活用できる文書の重要な知識コンポーネントである。
プロダクトマニュアルやユーザガイドといった巨大なドキュメントを解析して,どの部分でプロシージャについて話しているのかを自動的に理解し,それを抽出することは,非常に難しい問題です。
論文 参考訳(メタデータ) (2020-10-20T09:47:52Z) - OCR Graph Features for Manipulation Detection in Documents [11.193867567895353]
OCR(Optical Character Recognition)を用いたグラフ特徴量を利用したモデルを提案する。
本モデルは,OCR特徴量に基づいてランダムな森林分類器を訓練することにより,変化を検出するためのデータ駆動型手法に依存している。
我々は,本アルゴリズムの偽造検出性能を,若干の偽造不完全な実業務文書から構築したデータセット上で評価した。
論文 参考訳(メタデータ) (2020-09-10T21:50:45Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。