論文の概要: Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods
- arxiv url: http://arxiv.org/abs/2409.08479v2
- Date: Fri, 20 Sep 2024 04:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-23 20:14:44.707877
- Title: Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods
- Title(参考訳): 情報検索景観の探索:新しい評価手法と比較文書分割手法の検討
- Authors: Esmaeil Narimissa, David Raithel,
- Abstract要約: 本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
オープンソースのモデルを用いて,質問対と回答対の包括的データセットを生成する新しい評価手法を提案する。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of Retrieval-Augmented Generation (RAG) systems in information retrieval is significantly influenced by the characteristics of the documents being processed. In this study, the structured nature of textbooks, the conciseness of articles, and the narrative complexity of novels are shown to require distinct retrieval strategies. A comparative evaluation of multiple document-splitting methods reveals that the Recursive Character Splitter outperforms the Token-based Splitter in preserving contextual integrity. A novel evaluation technique is introduced, utilizing an open-source model to generate a comprehensive dataset of question-and-answer pairs, simulating realistic retrieval scenarios to enhance testing efficiency and metric reliability. The evaluation employs weighted scoring metrics, including SequenceMatcher, BLEU, METEOR, and BERT Score, to assess the system's accuracy and relevance. This approach establishes a refined standard for evaluating the precision of RAG systems, with future research focusing on optimizing chunk and overlap sizes to improve retrieval accuracy and efficiency.
- Abstract(参考訳): 情報検索における検索・拡張生成(RAG)システムの性能は,処理中の文書の特徴に大きく影響される。
本研究では, 教科書の構造的性質, 記事の簡潔さ, 小説の物語的複雑さについて, 明確な検索戦略が必要であることを示した。
複数の文書分割手法の比較評価により,再帰的文字分割法は文脈整合性を保つ上で,トークンベースの分割法よりも優れていることが明らかになった。
オープンソースのモデルを用いて、質問と回答のペアの包括的なデータセットを生成し、現実的な予測シナリオをシミュレートして、テスト効率とメートル法信頼性を向上させる、新しい評価手法が導入された。
評価には、SequenceMatcher、BLEU、METEOR、BERT Scoreなどの重み付けされたスコアを使用して、システムの正確性と妥当性を評価する。
このアプローチは、RAGシステムの精度を評価するための洗練された標準を確立し、今後の研究は、チャンクとオーバーラップサイズを最適化し、精度と効率を改善することに注力する。
関連論文リスト
- RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis [1.0972875392165036]
本稿では,FGモデルとCGモデルの両方の評価手法を標準化したtexttFiCo-ITRライブラリを提案する。
両サブフィールドから代表モデルの実証的評価を行い,精度,リコール,計算複雑性を分析した。
この結果から,最近の代表的FGモデルとCGモデル間の性能・効率トレードオフに関する新たな知見が得られ,それぞれの強みと限界が浮き彫りになった。
論文 参考訳(メタデータ) (2024-07-29T15:44:22Z) - Evaluating Retrieval Quality in Retrieval-Augmented Generation [21.115495457454365]
従来のエンドツーエンド評価手法は計算コストが高い。
本稿では,検索リストの各文書をRAGシステム内の大規模言語モデルで個別に利用するeRAGを提案する。
eRAGは、ランタイムを改善し、エンドツーエンド評価の最大50倍のGPUメモリを消費する、大きな計算上のアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-04-21T21:22:28Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
生成検索システムは、しばしばクエリに対する応答として、接地された生成されたテキストを直接返す。
このような生成的アドホック検索を適切に評価するには,テキスト応答の有用性の定量化が不可欠である。
論文 参考訳(メタデータ) (2023-11-08T14:05:00Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
そこで我々は,CLIPBERTScoreを提案する。
ゼロショットにおけるこの2つの指標の単純な組み合わせは、文書要約のための既存の事実度指標よりも高い相関性が得られることを示す。
本分析は,CLIPBERTScoreとそのコンポーネントの信頼性と高い相関性を示す。
論文 参考訳(メタデータ) (2022-11-04T16:50:40Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - How to Find Strong Summary Coherence Measures? A Toolbox and a
Comparative Study for Summary Coherence Measure Evaluation [3.434197496862117]
球面上での要約コヒーレンスモデリングのための様々な手法を大規模に検討する。
システム内相関とバイアス行列という2つの新しい分析尺度を導入し,コヒーレンス尺度のバイアスを識別し,システムレベルの共同設立者に対して堅牢性を提供する。
現在利用可能な自動コヒーレンス対策はいずれも、すべての評価指標にわたるシステム要約に信頼性の高いコヒーレンススコアを割り当てることはできないが、大規模言語モデルは、異なる要約の長さにわたって一般化する必要があることを考慮すれば、有望な結果を示す。
論文 参考訳(メタデータ) (2022-09-14T09:42:19Z) - Automating Document Classification with Distant Supervision to Increase
the Efficiency of Systematic Reviews [18.33687903724145]
体系的なレビューは高価で、時間的需要があり、労働集約的です。
文書のレビュー作業を大幅に削減するための自動文書分類アプローチを提案します。
論文 参考訳(メタデータ) (2020-12-09T22:45:40Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
教師なしコントラスト学習により,参照要約を使わずに要約品質を評価することを提案する。
具体的には、BERTに基づく言語的品質と意味情報の両方をカバーする新しい指標を設計する。
ニューズルームとCNN/デイリーメールの実験では,新たな評価手法が参照サマリーを使わずに他の指標よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-05T05:04:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。