論文の概要: Predictive Density Combination Using a Tree-Based Synthesis Function
- arxiv url: http://arxiv.org/abs/2311.12671v1
- Date: Tue, 21 Nov 2023 15:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:03:19.796453
- Title: Predictive Density Combination Using a Tree-Based Synthesis Function
- Title(参考訳): 木に基づく合成関数を用いた予測密度結合
- Authors: Tony Chernis, Niko Hauzenberger, Florian Huber, Gary Koop, James
Mitchell
- Abstract要約: 我々は回帰木を用いた合成関数の非パラメトリック処理を開発する。
2つのマクロ経済予測アプリケーションにおいて、木に基づくアプローチの利点を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian predictive synthesis (BPS) provides a method for combining multiple
predictive distributions based on agent/expert opinion analysis theory and
encompasses a range of existing density forecast pooling methods. The key
ingredient in BPS is a ``synthesis'' function. This is typically specified
parametrically as a dynamic linear regression. In this paper, we develop a
nonparametric treatment of the synthesis function using regression trees. We
show the advantages of our tree-based approach in two macroeconomic forecasting
applications. The first uses density forecasts for GDP growth from the euro
area's Survey of Professional Forecasters. The second combines density
forecasts of US inflation produced by many regression models involving
different predictors. Both applications demonstrate the benefits -- in terms of
improved forecast accuracy and interpretability -- of modeling the synthesis
function nonparametrically.
- Abstract(参考訳): ベイズ予測合成(BPS)はエージェント/専門家の意見分析理論に基づく複数の予測分布を組み合わせる方法を提供し、既存の密度予測プール法を包含する。
BPSの主要な成分は『合成』機能である。
これは典型的には動的線形回帰としてパラメトリックに指定される。
本稿では,回帰木を用いた合成関数の非パラメトリック処理を開発する。
我々は,2つのマクロ経済予測アプリケーションにおいて,木に基づくアプローチの利点を示す。
1回目はユーロ圏のプロフェッショナル・フォアキャスター調査によるGDP成長の密度予測を使用した。
2つめは、異なる予測因子を含む多くの回帰モデルによって生成される米国のインフレの密度予測を組み合わせることである。
どちらのアプリケーションも、合成関数を非パラメトリックにモデル化する利点(予測精度と解釈可能性の改善)を実証している。
関連論文リスト
- Extending Explainable Ensemble Trees (E2Tree) to regression contexts [1.5186937600119894]
E2Treeは、ランダムな森林を説明するための新しい方法論である。
これは、応答に対する予測変数の影響を考慮に入れている。
また、計算と異種性尺度の使用を通じて、予測変数間の関連性も説明できる。
論文 参考訳(メタデータ) (2024-09-10T11:42:55Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
予測不確実性推定の観点から,ランダム化木の様々なアンサンブルを再検討し,その挙動について検討する。
BwO林と呼ばれる無作為な樹木のアンサンブルを構築するための新しい手法を提案する。
実験により,既存の樹木モデルに対するBwO林の有効性と性能について様々な状況で検証した。
論文 参考訳(メタデータ) (2022-02-22T04:50:37Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
本稿では,高精度で信頼性が高く,鋭い予測を生成できる2段階確率予測フレームワークを提案する。
このフレームワークは、ポイント予測と予測間隔(PI)の両方について完全な透明性を提供する。
提案フレームワークの性能と適用性を強調するため,南ドイツにある2つのPV公園の実際のデータを用いている。
論文 参考訳(メタデータ) (2021-08-05T12:59:38Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Gaussian Process Boosting [13.162429430481982]
ガウス過程と混合効果モデルを組み合わせた新しい手法を提案する。
シミュレーションおよび実世界のデータセットに対する既存手法と比較して予測精度が向上する。
論文 参考訳(メタデータ) (2020-04-06T13:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。