論文の概要: Unveil Sources of Uncertainty: Feature Contribution to Conformal Prediction Intervals
- arxiv url: http://arxiv.org/abs/2505.13118v1
- Date: Mon, 19 May 2025 13:49:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.625634
- Title: Unveil Sources of Uncertainty: Feature Contribution to Conformal Prediction Intervals
- Title(参考訳): 不確かさの不確実性源:コンフォーマル予測間隔に対する特徴的寄与
- Authors: Marouane Il Idrissi, Agathe Fernandes Machado, Ewen Gallic, Arthur Charpentier,
- Abstract要約: 共形予測(CP)に基づく新しいモデルに依存しない不確実性属性(UA)法を提案する。
我々は,CP間隔特性-幅や境界条件-を値関数として定義し,入力特徴に対する予測不確かさを属性とする協調ゲームを定義する。
人工ベンチマークと実世界のデータセットを用いた実験は、我々のアプローチの実用的有用性と解釈的深さを実証する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative game theory methods, notably Shapley values, have significantly enhanced machine learning (ML) interpretability. However, existing explainable AI (XAI) frameworks mainly attribute average model predictions, overlooking predictive uncertainty. This work addresses that gap by proposing a novel, model-agnostic uncertainty attribution (UA) method grounded in conformal prediction (CP). By defining cooperative games where CP interval properties-such as width and bounds-serve as value functions, we systematically attribute predictive uncertainty to input features. Extending beyond the traditional Shapley values, we use the richer class of Harsanyi allocations, and in particular the proportional Shapley values, which distribute attribution proportionally to feature importance. We propose a Monte Carlo approximation method with robust statistical guarantees to address computational feasibility, significantly improving runtime efficiency. Our comprehensive experiments on synthetic benchmarks and real-world datasets demonstrate the practical utility and interpretative depth of our approach. By combining cooperative game theory and conformal prediction, we offer a rigorous, flexible toolkit for understanding and communicating predictive uncertainty in high-stakes ML applications.
- Abstract(参考訳): 協調ゲーム理論法、特にシェープリー値は、機械学習(ML)の解釈可能性を大幅に向上させた。
しかしながら、既存の説明可能なAI(XAI)フレームワークは、予測の不確実性を見越して、平均的なモデル予測を主な原因としている。
この研究は、共形予測(CP)に基づく新しいモデルに依存しない不確実性属性(UA)法を提案することによってギャップを解消する。
CP間隔特性を値関数として定義することにより,入力特徴に対する予測不確かさを系統的に評価する。
従来のShapley値を超えて、Harsanyiアロケーションのよりリッチなクラス、特に特徴的重要性に比例して帰属を分配する比例的なShapley値を使用する。
本稿では,モンテカルロ近似法を提案する。
人工ベンチマークと実世界のデータセットに関する包括的な実験は、我々のアプローチの実用的有用性と解釈的深さを実証している。
協調ゲーム理論と共形予測を組み合わせることで、高吸収MLアプリケーションにおける予測の不確実性を理解し、伝達するための厳密で柔軟なツールキットを提供する。
関連論文リスト
- From Abstract to Actionable: Pairwise Shapley Values for Explainable AI [0.8192907805418583]
提案するPairwise Shapley Valuesは,特徴属性を明示的,人間関連性のある比較に基礎を置く新しいフレームワークである。
本手法では,一値命令と組み合わせたペアワイズ参照選択を導入し,直観的,モデルに依存しない説明を行う。
Pairwise Shapley Valuesは多種多様な回帰・分類シナリオにおける解釈可能性を高めることを実証する。
論文 参考訳(メタデータ) (2025-02-18T04:20:18Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
The consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation。
まず、分散に明示的に依存し、弱い条件下で保持する新しい高次元確率収束保証を導出する。
さらに、文献よりも高速な速度を保証する凸集合のクラスに対して、洗練された高次元ベリー-エッセイン境界を確立する。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Ensemble Prediction via Covariate-dependent Stacking [0.0]
本研究は,CDST (Co-dependent stacking') という,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
以上の結果から,CDSTは時間的・時間的予測の問題に特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-19T07:31:31Z) - Probabilistically Plausible Counterfactual Explanations with Normalizing Flows [2.675793767640172]
本稿では,確率論的に妥当な反事実的説明を生成する新しい手法であるPPCEFを提案する。
本手法は, パラメータ分布の特定の族を仮定することなく, 明示密度関数を直接最適化することにより, 精度を向上する。
PPCEFは、機械学習モデルを解釈し、公正性、説明責任、AIシステムの信頼を改善するための強力なツールである。
論文 参考訳(メタデータ) (2024-05-27T20:24:03Z) - Energy-Based Model for Accurate Estimation of Shapley Values in Feature Attribution [7.378438977893025]
EmSHAP (Energy-based model for Shapley value Estimation) は、Shapleyコントリビューション関数の期待値を推定するために提案される。
GRU(Gated Recurrent Unit)結合分割関数推定法を提案する。
論文 参考訳(メタデータ) (2024-04-01T12:19:33Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。