Exploring Graph Classification Techniques Under Low Data Constraints: A
Comprehensive Study
- URL: http://arxiv.org/abs/2311.12737v1
- Date: Tue, 21 Nov 2023 17:23:05 GMT
- Title: Exploring Graph Classification Techniques Under Low Data Constraints: A
Comprehensive Study
- Authors: Kush Kothari, Bhavya Mehta, Reshmika Nambiar and Seema Shrawne
- Abstract summary: It covers various techniques for graph data augmentation, including node and edge perturbation, graph coarsening, and graph generation.
The paper explores these areas in depth and delves into further sub classifications.
It provides an extensive array of techniques that can be employed in solving graph processing problems faced in low-data scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This survey paper presents a brief overview of recent research on graph data
augmentation and few-shot learning. It covers various techniques for graph data
augmentation, including node and edge perturbation, graph coarsening, and graph
generation, as well as the latest developments in few-shot learning, such as
meta-learning and model-agnostic meta-learning. The paper explores these areas
in depth and delves into further sub classifications. Rule based approaches and
learning based approaches are surveyed under graph augmentation techniques.
Few-Shot Learning on graphs is also studied in terms of metric learning
techniques and optimization-based techniques. In all, this paper provides an
extensive array of techniques that can be employed in solving graph processing
problems faced in low-data scenarios.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
Graph representation learning aims to encode high-dimensional sparse graph-structured data into low-dimensional dense vectors.
Traditional methods have limited model capacity which limits the learning performance.
Deep graph representation learning has shown great potential and advantages over shallow (traditional) methods.
arXiv Detail & Related papers (2023-04-11T08:23:52Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
This survey aims to evaluate all major classes of graph embedding methods.
We organized graph embedding techniques using a taxonomy that includes methods from manual feature engineering, matrix factorization, shallow neural networks, and deep graph convolutional networks.
We designed experiments on top of PyTorch Geometric and DGL libraries and run experiments on different multicore CPU and GPU platforms.
arXiv Detail & Related papers (2021-12-20T07:50:26Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.