Fixing the problems of deep neural networks will require better training
data and learning algorithms
- URL: http://arxiv.org/abs/2311.12819v1
- Date: Tue, 26 Sep 2023 03:09:00 GMT
- Title: Fixing the problems of deep neural networks will require better training
data and learning algorithms
- Authors: Drew Linsley, Thomas Serre
- Abstract summary: We argue that DNNs are poor models of biological vision because they rely on strategies that differ markedly from those of humans.
We show that this problem is worsening as DNNs are becoming larger-scale and increasingly more accurate.
- Score: 20.414456664907316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bowers and colleagues argue that DNNs are poor models of biological vision
because they often learn to rival human accuracy by relying on strategies that
differ markedly from those of humans. We show that this problem is worsening as
DNNs are becoming larger-scale and increasingly more accurate, and prescribe
methods for building DNNs that can reliably model biological vision.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Performance-optimized deep neural networks are evolving into worse
models of inferotemporal visual cortex [8.45100792118802]
We show that object recognition accuracy of deep neural networks (DNNs) correlates with their ability to predict neural responses to natural images in the inferotemporal (IT) cortex.
Our results suggest that harmonized DNNs break the trade-off between ImageNet accuracy and neural prediction accuracy.
arXiv Detail & Related papers (2023-06-06T15:34:45Z) - Adversarial alignment: Breaking the trade-off between the strength of an
attack and its relevance to human perception [10.883174135300418]
Adversarial attacks have long been considered the "Achilles' heel" of deep learning.
Here, we investigate how the robustness of DNNs to adversarial attacks has evolved as their accuracy on ImageNet has continued to improve.
arXiv Detail & Related papers (2023-06-05T20:26:17Z) - Are Deep Neural Networks Adequate Behavioural Models of Human Visual
Perception? [8.370048099732573]
Deep neural networks (DNNs) are machine learning algorithms that have revolutionised computer vision.
We argue that it is important to distinguish between statistical tools and computational models.
We dispel a number of myths surrounding DNNs in vision science.
arXiv Detail & Related papers (2023-05-26T15:31:06Z) - Harmonizing the object recognition strategies of deep neural networks
with humans [10.495114898741205]
We show that state-of-the-art deep neural networks (DNNs) are becoming less aligned with humans as their accuracy improves.
Our work represents the first demonstration that the scaling laws that are guiding the design of DNNs today have also produced worse models of human vision.
arXiv Detail & Related papers (2022-11-08T20:03:49Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.