Wafer Map Defect Patterns Semi-Supervised Classification Using Latent
Vector Representation
- URL: http://arxiv.org/abs/2311.12840v1
- Date: Fri, 6 Oct 2023 08:23:36 GMT
- Title: Wafer Map Defect Patterns Semi-Supervised Classification Using Latent
Vector Representation
- Authors: Qiyu Wei and Wei Zhao and Xiaoyan Zheng and Zeng Zeng
- Abstract summary: The demand for defect detection during integrated circuit fabrication stages is becoming increasingly critical.
Traditional wafer map defect pattern detection methods involve manual inspection using electron microscopes.
We propose a model capable of automatically detecting defects as an alternative to manual operations.
- Score: 8.400553138721044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the globalization of semiconductor design and manufacturing processes
continues, the demand for defect detection during integrated circuit
fabrication stages is becoming increasingly critical, playing a significant
role in enhancing the yield of semiconductor products. Traditional wafer map
defect pattern detection methods involve manual inspection using electron
microscopes to collect sample images, which are then assessed by experts for
defects. This approach is labor-intensive and inefficient. Consequently, there
is a pressing need to develop a model capable of automatically detecting
defects as an alternative to manual operations. In this paper, we propose a
method that initially employs a pre-trained VAE model to obtain the fault
distribution information of the wafer map. This information serves as guidance,
combined with the original image set for semi-supervised model training. During
the semi-supervised training, we utilize a teacher-student network for
iterative learning. The model presented in this paper is validated on the
benchmark dataset WM-811K wafer dataset. The experimental results demonstrate
superior classification accuracy and detection performance compared to
state-of-the-art models, fulfilling the requirements for industrial
applications. Compared to the original architecture, we have achieved
significant performance improvement.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning [3.789219860006095]
We introduce a novel defect-generation method, named DDPM-MoCo, to address these issues.
Firstly, we utilize the Denoising Diffusion Probabilistic Model (DDPM) to generate high-quality defect data samples.
Secondly, we utilize the unsupervised learning Momentum Contrast model (MoCo) with an enhanced batch contrastive loss function for training the model on unlabeled data.
arXiv Detail & Related papers (2024-05-09T17:17:53Z) - Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
Training Membership Inference (TMI) task aims to determine whether a specific sample has been used in the training process of a target model.
In this paper, we explore a novel perspective for the TMI task by leveraging the intrinsic generative priors within the diffusion model.
arXiv Detail & Related papers (2024-03-13T12:52:37Z) - TEA: Test-time Energy Adaptation [67.4574269851666]
Test-time adaptation (TTA) aims to improve model generalizability when test data diverges from training distribution.
We propose a novel energy-based perspective, enhancing the model's perception of target data distributions.
arXiv Detail & Related papers (2023-11-24T10:49:49Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Voxel-wise classification for porosity investigation of additive
manufactured parts with 3D unsupervised and (deeply) supervised neural
networks [5.467497693327066]
This study revisits recent supervised (UNet, UNet++, UNet 3+, MSS-UNet) and unsupervised (VAE, ceVAE, gmVAE, vqVAE) DL models for volumetric analysis of AM samples from X-CT images.
It extends them to accept 3D input data with a 3D-patch pipeline for lower computational requirements, improved efficiency and generalisability.
The VAE/ceVAE models demonstrated superior capabilities, particularly when leveraging post-processing techniques.
arXiv Detail & Related papers (2023-05-13T11:23:00Z) - Test-time Adaptation with Slot-Centric Models [63.981055778098444]
Slot-TTA is a semi-supervised scene decomposition model that at test time is adapted per scene through gradient descent on reconstruction or cross-view synthesis objectives.
We show substantial out-of-distribution performance improvements against state-of-the-art supervised feed-forward detectors, and alternative test-time adaptation methods.
arXiv Detail & Related papers (2022-03-21T17:59:50Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.