論文の概要: InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions
- arxiv url: http://arxiv.org/abs/2311.12943v4
- Date: Sun, 2 Jun 2024 19:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 20:21:27.509772
- Title: InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions
- Title(参考訳): InteRACT:ロボット行動に基づく人間の意図予測のためのトランスフォーマーモデル
- Authors: Kushal Kedia, Atiksh Bhardwaj, Prithwish Dan, Sanjiban Choudhury,
- Abstract要約: InteRACTアーキテクチャは、大規模な人間と人間のデータセットと小さな人間とロボットのデータセットの微細構造に関する条件付き意図予測モデルを事前訓練する。
実世界の協調的なロボット操作タスクについて評価し、条件付きモデルが様々な限界ベースラインよりも改善されていることを示す。
- 参考スコア(独自算出の注目度): 7.574421886354134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In collaborative human-robot manipulation, a robot must predict human intents and adapt its actions accordingly to smoothly execute tasks. However, the human's intent in turn depends on actions the robot takes, creating a chicken-or-egg problem. Prior methods ignore such inter-dependency and instead train marginal intent prediction models independent of robot actions. This is because training conditional models is hard given a lack of paired human-robot interaction datasets. Can we instead leverage large-scale human-human interaction data that is more easily accessible? Our key insight is to exploit a correspondence between human and robot actions that enables transfer learning from human-human to human-robot data. We propose a novel architecture, InteRACT, that pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset. We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines. We also introduce new techniques to tele-operate a 7-DoF robot arm and collect a diverse range of human-robot collaborative manipulation data, which we open-source.
- Abstract(参考訳): 協調的なロボット操作では、ロボットは人間の意図を予測し、タスクを円滑に実行するために行動を調整する必要がある。
しかし、人間の意図はロボットの行動に左右され、ニワトリや卵の問題が生じる。
従来の手法は、そのような依存性を無視し、代わりにロボットの動作とは無関係に限界意図予測モデルを訓練する。
これは、ペアの人間とロボットの相互作用データセットが不足しているため、条件付きモデルのトレーニングが難しいためです。
代わりに、より容易にアクセス可能な大規模な人間と人間のインタラクションデータを利用することができますか?
私たちの重要な洞察は、人間とロボットのアクションの対応を利用して、人間からロボットのデータへの変換学習を可能にすることです。
InteRACTという,大規模人文データセットの条件付き意図予測モデルと小型人文ロボットデータセットの微細構造を事前学習するアーキテクチャを提案する。
実世界の協調的なロボット操作タスクについて評価し、条件付きモデルが様々な限界ベースラインよりも改善されていることを示す。
我々はまた、7-DoFロボットアームを遠隔操作する新しい技術を導入し、オープンソースで公開している多様な人間とロボットの協調操作データを収集する。
関連論文リスト
- ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Dynamically Switching Human Prediction Models for Efficient Planning [32.180808286226075]
ロボットは人間のモデル群にアクセスでき、オンラインで性能計算のトレードオフを評価することができる。
ドライビングシミュレーターを用いた実験では、ロボットが常に最高の人間モデルに匹敵する性能を発揮できることを示した。
論文 参考訳(メタデータ) (2021-03-13T23:48:09Z) - Supportive Actions for Manipulation in Human-Robot Coworker Teams [15.978389978586414]
我々は、将来の干渉を減らすことで相互作用を支援する行動を、支援ロボット行動と表現する。
1)タスク指向: ロボットは自身のタスク目標をさらに進めるためにのみ行動を取るし、(2)支援的: ロボットはタスク指向のタスクよりも支援的行動を好む。
シミュレーション実験では, 人体モデルを用いて, エージェント間の干渉を軽減し, 作業の完了に要する時間が長いことを明らかにした。
論文 参考訳(メタデータ) (2020-05-02T09:37:10Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z) - Human-robot co-manipulation of extended objects: Data-driven models and
control from analysis of human-human dyads [2.7036498789349244]
我々は人間と人間のダイアド実験のデータを用いて、物理的な人間とロボットのコマニピュレーションタスクに使用する動きの意図を決定する。
我々は、過去の動きに基づく人間の意図を予測するために、人間と人間のトライアルの動作データに基づくディープニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2020-01-03T21:23:12Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。