Towards Better Parameter-Efficient Fine-Tuning for Large Language
Models: A Position Paper
- URL: http://arxiv.org/abs/2311.13126v1
- Date: Wed, 22 Nov 2023 03:28:34 GMT
- Title: Towards Better Parameter-Efficient Fine-Tuning for Large Language
Models: A Position Paper
- Authors: Chengyu Wang, Junbing Yan, Wei Zhang, Jun Huang
- Abstract summary: This paper delves into the pressing need in.
-Efficient Fine-Tuning (PEFT) for Large Language Models (LLMs)
Our position paper highlights current states and the necessity of further studying into the topic.
- Score: 14.081178100662163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into the pressing need in Parameter-Efficient Fine-Tuning
(PEFT) for Large Language Models (LLMs). While LLMs possess remarkable
capabilities, their extensive parameter requirements and associated
computational demands hinder their practicality and scalability for real-world
applications. Our position paper highlights current states and the necessity of
further studying into the topic, and recognizes significant challenges and open
issues that must be addressed to fully harness the powerful abilities of LLMs.
These challenges encompass novel efficient PEFT architectures, PEFT for
different learning settings, PEFT combined with model compression techniques,
and the exploration of PEFT for multi-modal LLMs. By presenting this position
paper, we aim to stimulate further research and foster discussions surrounding
more efficient and accessible PEFT for LLMs.
Related papers
- FPE-LLM: Highly Intelligent Time-Series Forecasting and Language Interaction LLM in Energy Systems [5.218730690088186]
Fusion PEFT Energy LLM (FPE-LLM) is a large language model (LLM) fine-tuned for energy system forecasting.
FPE-LLM addresses three key challenges in the energy system and LLM fields.
arXiv Detail & Related papers (2024-10-30T11:22:37Z) - Contemporary Model Compression on Large Language Models Inference [7.307436175842646]
Large Language Models (LLMs) have revolutionized natural language processing by achieving state-of-the-art results across a variety of tasks.
The computational demands of LLM inference, including high memory consumption and slow processing speeds, pose significant challenges for real-world applications.
This survey explores techniques in model compression that address these challenges by reducing the size and computational requirements of LLMs.
arXiv Detail & Related papers (2024-09-03T15:35:01Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models:
A Critical Review and Assessment [12.674032145667763]
We present a comprehensive and systematic review of Efficient Fine-Tuning (PEFT) methods for pretrained language models (PLMs)
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning.
We conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency.
arXiv Detail & Related papers (2023-12-19T13:31:24Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
Large Language Models (LLMs) generate code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning.
Previous research explored In-Context Learning (ICL) as a strategy to guide the LLM generative process with task-specific prompt examples.
In this paper, we deliver a comprehensive study of.
PEFT techniques for LLMs under the automated code generation scenario.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - A Survey on Model Compression for Large Language Models [21.768293256849113]
Large Language Models (LLMs) have transformed natural language processing tasks successfully.
Yet, their large size and high computational needs pose challenges for practical use.
Model compression has emerged as a key research area to address these challenges.
arXiv Detail & Related papers (2023-08-15T08:31:05Z) - LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of
Large Language Models [75.25782573728677]
This paper presents a framework for adapter-based parameter-efficient fine-tuning (PEFT) of language models (LLMs)
The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, and GPT-J, as well as widely used adapters such as Series adapters, Parallel adapter, Prompt-based learning and Reparametrization-based methods.
We evaluate the effectiveness of the adapters on fourteen datasets from two different reasoning tasks, Arithmetic Reasoning and Commonsense Reasoning.
arXiv Detail & Related papers (2023-04-04T16:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.