MetaCloak: Preventing Unauthorized Subject-driven Text-to-image Diffusion-based Synthesis via Meta-learning
- URL: http://arxiv.org/abs/2311.13127v5
- Date: Fri, 26 Apr 2024 18:27:56 GMT
- Title: MetaCloak: Preventing Unauthorized Subject-driven Text-to-image Diffusion-based Synthesis via Meta-learning
- Authors: Yixin Liu, Chenrui Fan, Yutong Dai, Xun Chen, Pan Zhou, Lichao Sun,
- Abstract summary: Text-to-image diffusion models allow seamless generation of personalized images from scant reference photos.
Existing approaches perturb user images in imperceptible way to render them "unlearnable" from malicious uses.
We propose MetaCloak, which solves the bi-level poisoning problem with a meta-learning framework.
- Score: 59.988458964353754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models allow seamless generation of personalized images from scant reference photos. Yet, these tools, in the wrong hands, can fabricate misleading or harmful content, endangering individuals. To address this problem, existing poisoning-based approaches perturb user images in an imperceptible way to render them "unlearnable" from malicious uses. We identify two limitations of these defending approaches: i) sub-optimal due to the hand-crafted heuristics for solving the intractable bilevel optimization and ii) lack of robustness against simple data transformations like Gaussian filtering. To solve these challenges, we propose MetaCloak, which solves the bi-level poisoning problem with a meta-learning framework with an additional transformation sampling process to craft transferable and robust perturbation. Specifically, we employ a pool of surrogate diffusion models to craft transferable and model-agnostic perturbation. Furthermore, by incorporating an additional transformation process, we design a simple denoising-error maximization loss that is sufficient for causing transformation-robust semantic distortion and degradation in a personalized generation. Extensive experiments on the VGGFace2 and CelebA-HQ datasets show that MetaCloak outperforms existing approaches. Notably, MetaCloak can successfully fool online training services like Replicate, in a black-box manner, demonstrating the effectiveness of MetaCloak in real-world scenarios. Our code is available at https://github.com/liuyixin-louis/MetaCloak.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Multimodal Unlearnable Examples: Protecting Data against Multimodal Contrastive Learning [53.766434746801366]
Multimodal contrastive learning (MCL) has shown remarkable advances in zero-shot classification by learning from millions of image-caption pairs crawled from the Internet.
Hackers may unauthorizedly exploit image-text data for model training, potentially including personal and privacy-sensitive information.
Recent works propose generating unlearnable examples by adding imperceptible perturbations to training images to build shortcuts for protection.
We propose Multi-step Error Minimization (MEM), a novel optimization process for generating multimodal unlearnable examples.
arXiv Detail & Related papers (2024-07-23T09:00:52Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration [46.96362010335177]
In this paper, we propose HIT, a simple yet effective High-frequency Injected Transformer for image restoration.
Specifically, we design a window-wise injection module (WIM), which incorporates abundant high-frequency details into the feature map, to provide reliable references for restoring high-quality images.
In addition, we introduce a spatial enhancement unit (SEU) to preserve essential spatial relationships that may be lost due to the computations carried out across channel dimensions in the BIM.
arXiv Detail & Related papers (2024-03-30T08:05:00Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiff is a novel approach to synthesize salient objects in camouflaged scenes.
We leverage the latent diffusion model to synthesize salient objects in camouflaged scenes.
Our approach enables flexible editing and efficient large-scale dataset generation at a low cost.
arXiv Detail & Related papers (2023-04-11T19:37:47Z) - Retinex Image Enhancement Based on Sequential Decomposition With a
Plug-and-Play Framework [16.579397398441102]
We design a plug-and-play framework based on the Retinex theory for simultaneously image enhancement and noise removal.
Our framework outcompetes the state-of-the-art methods in both image enhancement and denoising.
arXiv Detail & Related papers (2022-10-11T13:29:10Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.