Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides
- URL: http://arxiv.org/abs/2311.13261v4
- Date: Mon, 28 Oct 2024 16:24:31 GMT
- Title: Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides
- Authors: Maren Høibø, André Pedersen, Vibeke Grotnes Dale, Sissel Marie Berget, Borgny Ytterhus, Cecilia Lindskog, Elisabeth Wik, Lars A. Akslen, Ingerid Reinertsen, Erik Smistad, Marit Valla,
- Abstract summary: We developed an AI model for segmentation of epithelial cells in sections from breast cancer.
Quantitative evaluation, a mean Dice score of 0.70, 0.79, and 0.75 for invasive epithelial cells, benign epithelial cells, and in situ lesions, respectively, were achieved.
- Score: 0.3251634769699391
- License:
- Abstract: Digital pathology enables automatic analysis of histopathological sections using artificial intelligence (AI). Automatic evaluation could improve diagnostic efficiency and help find associations between morphological features and clinical outcome. For development of such prediction models, identifying invasive epithelial cells, and separating these from benign epithelial cells and in situ lesions would be the first step. In this study, we aimed to develop an AI model for segmentation of epithelial cells in sections from breast cancer. We generated epithelial ground truth masks by restaining hematoxylin and eosin (HE) sections with cytokeratin (CK) AE1/AE3, and by pathologists' annotations. HE/CK image pairs were used to train a convolutional neural network, and data augmentation was used to make the model more robust. Tissue microarrays (TMAs) from 839 patients, and whole slide images from two patients were used for training and evaluation of the models. The sections were derived from four cohorts of breast cancer patients. TMAs from 21 patients from a fifth cohort was used as a second test set. In quantitative evaluation, a mean Dice score of 0.70, 0.79, and 0.75 for invasive epithelial cells, benign epithelial cells, and in situ lesions, respectively, were achieved. In qualitative scoring (0-5) by pathologists, results were best for all epithelium and invasive epithelium, with scores of 4.7 and 4.4. Scores for benign epithelium and in situ lesions were 3.7 and 2.0. The proposed model segmented epithelial cells in HE stained breast cancer slides well, but further work is needed for accurate division between the classes. Immunohistochemistry, together with pathologists' annotations, enabled the creation of accurate ground truths. The model is made freely available in FastPathology and the code is available at https://github.com/AICAN-Research/breast-epithelium-segmentation
Related papers
- Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - RCdpia: A Renal Carcinoma Digital Pathology Image Annotation dataset based on pathologists [14.79279940958727]
We have compiled the TCGA digital pathological dataset with independent labeling of tumor regions and adjacent areas (RCdpia)
This dataset is now publicly accessible at http://39.171.241.18:8888/RCdpia/.
arXiv Detail & Related papers (2024-03-17T13:23:25Z) - Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images [0.5906576076342179]
Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns.
We propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor.
arXiv Detail & Related papers (2023-11-27T14:12:51Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
Histologic remission is a new therapeutic target in ulcerative colitis (UC)
Endocytoscopy (EC) is a novel ultra-high magnification endoscopic technique.
We propose a neural network model that can assess histological disease activity in EC images.
arXiv Detail & Related papers (2023-08-28T15:54:14Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
Isocitrate dehydrogenase mutation and 1p/19q codeletion status are important prognostic markers for glioma.
Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI.
A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status.
arXiv Detail & Related papers (2022-10-07T18:46:39Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung
Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans [36.093580055848186]
Lung Adenocarcinoma (LAUC) has recently been the most prevalent.
Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries.
The primary imaging modality to assess and predict the invasiveness of LAUCs is the chest CT.
In this paper, a predictive transformer-based framework, referred to as the "CAE-Transformer", is developed to classify LAUCs.
arXiv Detail & Related papers (2021-10-17T04:37:24Z) - Histogram of Cell Types: Deep Learning for Automated Bone Marrow
Cytology [3.8385120184415418]
Histogram of Cell Types (HCT) is a novel representation of bone marrow cell class probability distribution.
HCT has potential to revolutionize hematopathology diagnostic, leading to more cost-effective, accurate diagnosis and opening the door to precision medicine.
arXiv Detail & Related papers (2021-07-05T21:55:00Z) - Multi-scale Deep Learning Architecture for Nucleus Detection in Renal
Cell Carcinoma Microscopy Image [7.437224586066945]
Clear cell renal cell carcinoma (ccRCC) is one of the most common forms of intratumoral heterogeneity in the study of renal cancer.
In this paper, we introduce a deep learning-based detection model for cell classification on IHC stained histology images.
Our model maps the multi-scale pyramid features and saliency information from local bounded regions and predicts the bounding box coordinates through regression.
arXiv Detail & Related papers (2021-04-28T03:36:02Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.