Intention and Context Elicitation with Large Language Models in the
Legal Aid Intake Process
- URL: http://arxiv.org/abs/2311.13281v1
- Date: Wed, 22 Nov 2023 10:04:29 GMT
- Title: Intention and Context Elicitation with Large Language Models in the
Legal Aid Intake Process
- Authors: Nick Goodson, Rongfei Lu
- Abstract summary: We demonstrate a proof-of-concept using Large Language Models (LLMs) to elicit and infer clients' underlying intentions and specific legal circumstances.
We also propose future research directions to use supervised fine-tuning or offline reinforcement learning to automatically incorporate intention and context elicitation.
- Score: 0.7252027234425334
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) and chatbots show significant promise in
streamlining the legal intake process. This advancement can greatly reduce the
workload and costs for legal aid organizations, improving availability while
making legal assistance more accessible to a broader audience. However, a key
challenge with current LLMs is their tendency to overconfidently deliver an
immediate 'best guess' to a client's question based on the output distribution
learned over the training data. This approach often overlooks the client's
actual intentions or the specifics of their legal situation. As a result,
clients may not realize the importance of providing essential additional
context or expressing their underlying intentions, which are crucial for their
legal cases. Traditionally, logic based decision trees have been used to
automate intake for specific access to justice issues, such as immigration and
eviction. But those solutions lack scalability. We demonstrate a
proof-of-concept using LLMs to elicit and infer clients' underlying intentions
and specific legal circumstances through free-form, language-based
interactions. We also propose future research directions to use supervised
fine-tuning or offline reinforcement learning to automatically incorporate
intention and context elicitation in chatbots without explicit prompting.
Related papers
- Optimizing Numerical Estimation and Operational Efficiency in the Legal Domain through Large Language Models [13.067312163677933]
We propose a novel approach integrating Large Language Models with specially designed prompts to address precision requirements in legal Artificial Intelligence (LegalAI) applications.
To validate this method, we introduce a curated dataset tailored to precision-oriented LegalAI tasks.
arXiv Detail & Related papers (2024-07-26T18:46:39Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Faithfulness vs. Plausibility: On the (Un)Reliability of Explanations from Large Language Models [26.11408084129897]
Large Language Models (LLMs) are deployed as powerful tools for several natural language processing (NLP) applications.
Recent works show that modern LLMs can generate self-explanations (SEs), which elicit their intermediate reasoning steps for explaining their behavior.
We discuss the dichotomy between faithfulness and plausibility in SEs generated by LLMs.
arXiv Detail & Related papers (2024-02-07T06:32:50Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Interpretable Long-Form Legal Question Answering with
Retrieval-Augmented Large Language Models [10.834755282333589]
Long-form Legal Question Answering dataset comprises 1,868 expert-annotated legal questions in the French language.
Our experimental results demonstrate promising performance on automatic evaluation metrics.
As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains.
arXiv Detail & Related papers (2023-09-29T08:23:19Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions.
After initial experimental results, we refine the target citation predictions with the feedback of legal experts.
We introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers.
arXiv Detail & Related papers (2023-05-25T21:40:58Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.