Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach
- URL: http://arxiv.org/abs/2403.05636v1
- Date: Fri, 8 Mar 2024 19:18:53 GMT
- Title: Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach
- Authors: Zhen Tan, Jie Peng, Tianlong Chen, Huan Liu
- Abstract summary: Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
- Score: 55.613461060997004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have catalyzed transformative advances across a
spectrum of natural language processing tasks through few-shot or zero-shot
prompting, bypassing the need for parameter tuning. While convenient, this
modus operandi aggravates ``hallucination'' concerns, particularly given the
enigmatic ``black-box'' nature behind their gigantic model sizes. Such concerns
are exacerbated in high-stakes applications (e.g., healthcare), where
unaccountable decision errors can lead to devastating consequences. In
contrast, human decision-making relies on nuanced cognitive processes, such as
the ability to sense and adaptively correct misjudgments through conceptual
understanding. Drawing inspiration from human cognition, we propose an
innovative \textit{metacognitive} approach, dubbed \textbf{CLEAR}, to equip
LLMs with capabilities for self-aware error identification and correction. Our
framework facilitates the construction of concept-specific sparse subnetworks
that illuminate transparent decision pathways. This provides a novel interface
for model \textit{intervention} after deployment. Our intervention offers
compelling advantages: (\textit{i})~at deployment or inference time, our
metacognitive LLMs can self-consciously identify potential mispredictions with
minimum human involvement, (\textit{ii})~the model has the capability to
self-correct its errors efficiently, obviating the need for additional tuning,
and (\textit{iii})~the rectification procedure is not only self-explanatory but
also user-friendly, enhancing the interpretability and accessibility of the
model. By integrating these metacognitive features, our approach pioneers a new
path toward engendering greater trustworthiness and accountability in the
deployment of LLMs.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
This work introduces a novel Bayesian prompting approach that facilitates training-free Bayesian inference with large language models.
Our results indicate that the model effectively enhances confidence elicitation and text generation quality, demonstrating its potential to improve AI language understanding systems.
arXiv Detail & Related papers (2024-06-08T16:35:31Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - N-Critics: Self-Refinement of Large Language Models with Ensemble of
Critics [5.516095889257118]
We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination.
This method involves refining model outputs through an ensemble of critics and the model's own feedback.
arXiv Detail & Related papers (2023-10-28T11:22:22Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
"Hallucination" refers to instances where large language models (LLMs) generate factually inaccurate or ungrounded information.
We introduce a novel pre-language self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction.
We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-09-06T01:57:36Z) - LAP: An Attention-Based Module for Concept Based Self-Interpretation and
Knowledge Injection in Convolutional Neural Networks [2.8948274245812327]
We propose a new attention-based pooling layer, called Local Attention Pooling (LAP), that accomplishes self-interpretability.
LAP is easily pluggable into any convolutional neural network, even the already trained ones.
LAP offers more valid human-understandable and faithful-to-the-model interpretations than the commonly used white-box explainer methods.
arXiv Detail & Related papers (2022-01-27T21:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.