Towards the Intuitive Understanding of Quantum World: Sonification of Rabi Oscillations, Wigner functions, and Quantum Simulators
- URL: http://arxiv.org/abs/2311.13313v2
- Date: Tue, 26 Mar 2024 12:01:31 GMT
- Title: Towards the Intuitive Understanding of Quantum World: Sonification of Rabi Oscillations, Wigner functions, and Quantum Simulators
- Authors: Reiko Yamada, Eloy PiƱol, Samuele Grandi, Jakub Zakrzewski, Maciej Lewenstein,
- Abstract summary: We propose sonification as a method toward an intuitive understanding of quantum mechanical phenomena.
This paper illustrates various methods we experimented with in sonification and score representations of quantum data depending on the source data and performance settings.
- Score: 0.32985979395737786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been considerable interest in "sonifying" scientific data; however, sonifying quantum processes using the newest quantum technologies, including Noise Intermediate Scale Quantum devices and quantum random number generators, is still an emerging area of research. Music technologists and composers employ the growing accessibility to diverse data from quantum mechanics as musical tools in the hope of generating new sound expressions. How different is the quantum world from the classical one, and is it possible to express the quantum world using sounds? Quantum phenomena are very different from those that we experience in our everyday lives. Thus, it is challenging to understand them intuitively. In this paper, we propose sonification as a method toward an intuitive understanding of various quantum mechanical phenomena, from Rabi oscillations and resonance fluorescence of a single atom through the generation of Schr\"odinger cat states in strong laser field physics to insulator-superfluid transition in quantum many-body systems. This paper illustrates various methods we experimented with in sonification and score representations of quantum data depending on the source data and performance settings.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - New Directions in Quantum Music: concepts for a quantum keyboard and the
sound of the Ising model [0.0]
We explore ideas for generating sounds and eventually music by using quantum devices in the NISQ era using quantum circuits.
In particular, we first consider a concept for a "qeyboard", where the real-time behaviour of expectation values using a time evolving quantum circuit can be associated to sound features like intensity, frequency and tone.
arXiv Detail & Related papers (2022-04-01T12:45:39Z) - Quantifying information scrambling via Classical Shadow Tomography on
Programmable Quantum Simulators [0.0]
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes.
We measure both signatures, and support our results with numerical simulations of the quantum system.
arXiv Detail & Related papers (2022-02-10T16:36:52Z) - Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit
Programmable Superconducting Processor [17.470012490921192]
Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics.
Here, we propose a new approach called quantum neuronal sensing.
We show that our scheme can efficiently classify two different types of many-body phenomena.
arXiv Detail & Related papers (2022-01-16T03:20:04Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Impacts of Noise and Structure on Quantum Information Encoded in a
Quantum Memory [0.6332429219530602]
We study the correlation of the structure of quantum information with physical noise models of various possible quantum memory implementations.
Our findings point to simple, experimentally relevant formulas for the relative lifetimes of quantum information in different quantum memories.
arXiv Detail & Related papers (2020-11-26T06:12:24Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.