Quantum Intuition XR: Tangible Quantum Mechanics using Interactive XR Experience
- URL: http://arxiv.org/abs/2504.08984v1
- Date: Fri, 11 Apr 2025 21:26:49 GMT
- Title: Quantum Intuition XR: Tangible Quantum Mechanics using Interactive XR Experience
- Authors: Jamie Ngoc Dinh, Marven Wong, Matthew Brooks, Charles Tahan, Myungin Lee,
- Abstract summary: Quantum Intuition XR is an interactive, extended reality (XR) experience designed to make quantum concepts tangible.<n>Our system visualizes core principles of quantum computing, including qubits, superposition, entanglement, and measurement.<n>Preliminary expert interviews and demonstrations with quantum specialists indicate that the system accurately represents quantum phenomena.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding quantum mechanics is inherently challenging due to its counterintuitive principles. Quantum Intuition XR is an interactive, extended reality (XR) experience designed to make quantum concepts tangible. Our system visualizes core principles of quantum computing, including qubits, superposition, entanglement, and measurement, through immersive interaction. Using a Mixed Reality headset, participants engage with floating qubits, manipulate their states via controllers, and observe entanglement dynamics through real-time audiovisual feedback. A key feature of our implementation is the mathematically accurate and dynamic representation of qubits, both individually and while interacting with each other. The visualization of the qubit states evolve -- rotate, shrink, grow, entangle -- depending on their actual quantum states, which depend on variables such as proximity to other qubits and user interaction. Preliminary expert interviews and demonstrations with quantum specialists indicate that the system accurately represents quantum phenomena, suggesting strong potential to educate and enhance quantum intuition for non-expert audiences. This approach bridges abstract quantum mechanics with embodied learning, offering an intuitive and accessible way for users to explore quantum phenomena. Future work will focus on expanding multi-user interactions and refining the fidelity of quantum state visualizations.
Related papers
- Towards the Intuitive Understanding of Quantum World: Sonification of Rabi Oscillations, Wigner functions, and Quantum Simulators [0.32985979395737786]
We propose sonification as a method toward an intuitive understanding of quantum mechanical phenomena.
This paper illustrates various methods we experimented with in sonification and score representations of quantum data depending on the source data and performance settings.
arXiv Detail & Related papers (2023-11-22T11:06:54Z) - QuantumEyes: Towards Better Interpretability of Quantum Circuits [6.039166896674042]
We propose QuantumEyes, an interactive visual analytics system to enhance the interpretability of quantum circuits.
For the global-level analysis, we present three coupled visualizations to delineate the changes of quantum states and the underlying reasons.
For the local-level analysis, we design a novel geometrical visualization Dandelion Chart to explicitly reveal how the quantum amplitudes affect the probability of the quantum state.
arXiv Detail & Related papers (2023-11-14T08:20:11Z) - Universal shot-noise limit for quantum metrology with local Hamiltonians [2.624076371876711]
We derive a universal and fundamental bound for the growth of the quantum Fisher information.
We prove that the precision cannot surpass the shot noise limit at all times in locally interacting quantum systems.
arXiv Detail & Related papers (2023-08-07T16:13:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.