論文の概要: Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot
Images
- arxiv url: http://arxiv.org/abs/2311.13398v1
- Date: Wed, 22 Nov 2023 13:53:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 14:49:50.682602
- Title: Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot
Images
- Title(参考訳): ファウショット画像における3次元ガウス平滑化の深さ正規化最適化
- Authors: Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee
- Abstract要約: オーバーフィッティングを緩和するための幾何ガイドとして,密集深度マップを導入する。
提案手法は,NeRF-LLFFデータセット上で,少ない画像数で検証する。
- 参考スコア(独自算出の注目度): 47.14713579719103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a method to optimize Gaussian splatting with a
limited number of images while avoiding overfitting. Representing a 3D scene by
combining numerous Gaussian splats has yielded outstanding visual quality.
However, it tends to overfit the training views when only a small number of
images are available. To address this issue, we introduce a dense depth map as
a geometry guide to mitigate overfitting. We obtained the depth map using a
pre-trained monocular depth estimation model and aligning the scale and offset
using sparse COLMAP feature points. The adjusted depth aids in the color-based
optimization of 3D Gaussian splatting, mitigating floating artifacts, and
ensuring adherence to geometric constraints. We verify the proposed method on
the NeRF-LLFF dataset with varying numbers of few images. Our approach
demonstrates robust geometry compared to the original method that relies solely
on images.
- Abstract(参考訳): 本稿では,過剰適合を回避しつつ,限られた画像数でガウススプラッティングを最適化する方法を提案する。
多数のガウススプラットを組み合わせることで3Dシーンを表現することで、目立った視覚的品質が得られる。
しかし、少数の画像しか利用できない場合、トレーニングビューは過度に適合する傾向にある。
この問題に対処するため,オーバーフィッティングを緩和するための幾何ガイドとして深度マップを導入する。
事前学習した単眼深度推定モデルを用いて深度マップを求め,スパースコルマップ特徴点を用いたスケールとオフセットの調整を行った。
調整された深度は、3Dガウススプラッティングのカラーベース最適化、浮動小道具の緩和、幾何学的制約の遵守を保証する。
提案手法は,NeRF-LLFFデータセット上で,少ない画像数で検証する。
本手法は,画像のみに依存する元の手法と比較してロバストな形状を示す。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering [47.879695094904015]
そこで本研究では,地上ロボット軌道データセットのための新しいビューレンダリングアルゴリズムであるMode-GSを提案する。
提案手法は,既存の3次元ガウススプラッティングアルゴリズムの限界を克服する目的で,アンカー付きガウススプラッターを用いている。
提案手法は,PSNR,SSIM,LPIPSの計測値に基づいて,自由軌道パターンを持つ地上環境におけるレンダリング性能を向上する。
論文 参考訳(メタデータ) (2024-10-06T23:01:57Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
任意のスケールでガウスを適応させる統一最適化法を提案する。
ミップマップ技術に触発されて、ターゲットスケールのための擬似基底構造を設計し、3次元ガウスアンにスケール情報を注入するスケール一貫性誘導損失を提案する。
本手法は,PSNRの3DGSを,ズームインで平均9.25dB,ズームアウトで平均10.40dBで上回っている。
論文 参考訳(メタデータ) (2024-08-12T16:49:22Z) - InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior [36.23604779569843]
3Dガウスアンは、最近、新しいビュー合成の効率的な表現として現れた。
本研究は、その編集性について、特に塗装作業に焦点を当てて研究する。
2Dインペイントと比較すると、3Dガウスのクルックスは、導入された点のレンダリング関連性を理解することである。
論文 参考訳(メタデータ) (2024-04-17T17:59:53Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) 技術は3Dプリミティブを相違可能なガウス化と組み合わせて高品質な新規ビュー結果を得る。
しかし、3D-GSは、高頻度の詳細を含む複雑なシーンで過度に再構成の問題に悩まされ、ぼやけた描画画像に繋がる。
本稿では,前述の人工物,すなわち勾配衝突の原因を包括的に分析する。
我々の戦略は過度に再構成された地域のガウス人を効果的に同定し、分割して細部を復元する。
論文 参考訳(メタデータ) (2024-04-16T11:44:12Z) - Compact 3D Gaussian Splatting For Dense Visual SLAM [32.37035997240123]
本稿では,ガウス楕円体の数とパラメータサイズを削減できるコンパクトな3次元ガウス格子SLAMシステムを提案する。
余剰楕円体を減らすために、スライドウィンドウベースのマスキング戦略が最初に提案されている。
本手法は,シーン表現の最先端(SOTA)品質を維持しつつ,高速なトレーニングとレンダリングの高速化を実現する。
論文 参考訳(メタデータ) (2024-03-17T15:41:35Z) - NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from
Multi-view Images [18.303674194874457]
キャリブレーションされた多視点画像から物体の3次元特徴曲線を再構成する問題について検討する。
ニューラルエッジ場(NEF)と呼ばれる3次元エッジの密度分布を表すニューラル暗黙フィールドを学習する。
NEFは、所定のビューで2次元エッジマップを描画するビューベースのレンダリングロスで最適化され、そのビューの画像から抽出された接地トラスエッジマップと比較される。
論文 参考訳(メタデータ) (2023-03-14T06:45:13Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
本稿では,多視点画像から3次元屋内シーンを再構築する課題について述べる。
平面的制約は、最近の暗黙の神経表現に基づく再構成手法に便利に組み込むことができる。
提案手法は, 従来の手法よりも3次元再構成品質に優れていた。
論文 参考訳(メタデータ) (2022-05-05T17:59:55Z) - Depth Completion using Piecewise Planar Model [94.0808155168311]
深度マップは一連の学習された基底で表現することができ、閉じた解法で効率的に解ける。
しかし、この方法の1つの問題は、色境界が深さ境界と矛盾する場合にアーチファクトを生成することである。
私たちは、より厳密な深度回復モデルを実行します。
論文 参考訳(メタデータ) (2020-12-06T07:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。