論文の概要: Depth Completion using Piecewise Planar Model
- arxiv url: http://arxiv.org/abs/2012.03195v1
- Date: Sun, 6 Dec 2020 07:11:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 13:58:10.479908
- Title: Depth Completion using Piecewise Planar Model
- Title(参考訳): 分割平面モデルによる奥行き完了
- Authors: Yiran Zhong, Yuchao Dai, Hongdong Li
- Abstract要約: 深度マップは一連の学習された基底で表現することができ、閉じた解法で効率的に解ける。
しかし、この方法の1つの問題は、色境界が深さ境界と矛盾する場合にアーチファクトを生成することである。
私たちは、より厳密な深度回復モデルを実行します。
- 参考スコア(独自算出の注目度): 94.0808155168311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A depth map can be represented by a set of learned bases and can be
efficiently solved in a closed form solution. However, one issue with this
method is that it may create artifacts when colour boundaries are inconsistent
with depth boundaries. In fact, this is very common in a natural image. To
address this issue, we enforce a more strict model in depth recovery: a
piece-wise planar model. More specifically, we represent the desired depth map
as a collection of 3D planar and the reconstruction problem is formulated as
the optimization of planar parameters. Such a problem can be formulated as a
continuous CRF optimization problem and can be solved through particle based
method (MP-PBP) \cite{Yamaguchi14}. Extensive experimental evaluations on the
KITTI visual odometry dataset show that our proposed methods own high
resistance to false object boundaries and can generate useful and visually
pleasant 3D point clouds.
- Abstract(参考訳): 深度マップは一連の学習された基底で表現することができ、閉じた解法で効率的に解ける。
しかし、この方法の1つの問題は、色境界が深さ境界と矛盾する場合にアーチファクトを生成することである。
実際、これは自然のイメージではよくあることです。
この問題に対処するため、我々はより厳密な深度回復モデル(ピースワイドプラナーモデル)を適用した。
具体的には,3次元平面の集まりとして所望の深さマップを表現し,平面パラメータの最適化として再構成問題を定式化する。
このような問題は連続CRF最適化問題として定式化することができ、粒子ベース法 (MP-PBP) \cite{yamaguchi14} によって解ける。
kittiビジュアルオドメトリデータセットの広範な実験的評価は、提案手法が偽物境界に対する高い抵抗を有し、有用で視覚的に快適な3dポイント雲を生成できることを示している。
関連論文リスト
- Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot
Images [47.14713579719103]
オーバーフィッティングを緩和するための幾何ガイドとして,密集深度マップを導入する。
調整された深度は3Dガウススプラッティングのカラーベース最適化に有効である。
提案手法は,NeRF-LLFFデータセット上で,少ない画像数で検証する。
論文 参考訳(メタデータ) (2023-11-22T13:53:04Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
Diff-DOPE, 画像入力を行う6-DoFポーズ精細機, オブジェクトの3次元テクスチャモデル, オブジェクトの初期ポーズを紹介する。
この方法は、画像とモデルの投影の間の視覚的エラーを最小限に抑えるために、オブジェクトのポーズを更新するために微分可能なレンダリングを使用する。
このシンプルで効果的なアイデアは、ポーズ推定データセットで最先端の結果を得ることができることを示す。
論文 参考訳(メタデータ) (2023-09-30T18:52:57Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - Depth Completion using Geometry-Aware Embedding [22.333381291860498]
本稿では,幾何認識の埋め込みを効率的に学習する手法を提案する。
局所的および大域的な幾何学的構造情報を、例えば、シーンレイアウト、オブジェクトのサイズと形状などの3Dポイントから符号化し、深度推定を導く。
論文 参考訳(メタデータ) (2022-03-21T12:06:27Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
本稿では,Deep Implicit Fieldsから表面メッシュを明示的に表現する方法を提案する。
我々の重要な洞察は、暗黙の場摂動が局所的な表面形状にどのように影響するかを推論することによって、最終的に表面サンプルの3次元位置を区別できるということである。
私たちはこれを利用して、そのトポロジを変えることができるDeepMesh – エンドツーエンドの差別化可能なメッシュ表現を定義する。
論文 参考訳(メタデータ) (2021-06-20T20:12:41Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
深度補正のための新しい大域的幾何制約を提案する。
低次元部分空間上によく配置される深さ写像を仮定することにより、高密度深度写像は全解像度の主深度基底の重み付け和で近似することができる。
論文 参考訳(メタデータ) (2020-12-02T11:57:37Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
単一画像深度推定は難しい問題である。
完全に微分可能な順序回帰を定式化し、エンドツーエンドでネットワークを訓練する。
深度補正のための画素ごとの信頼度マップ計算も提案した。
論文 参考訳(メタデータ) (2020-06-16T15:21:00Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。