Deep-learning-based acceleration of MRI for radiotherapy planning of
pediatric patients with brain tumors
- URL: http://arxiv.org/abs/2311.13485v1
- Date: Wed, 22 Nov 2023 16:01:44 GMT
- Title: Deep-learning-based acceleration of MRI for radiotherapy planning of
pediatric patients with brain tumors
- Authors: Shahinur Alam, Jinsoo Uh, Alexander Dresner, Chia-ho Hua, and Khaled
Khairy
- Abstract summary: We developed a deep learning-based method for MRI reconstruction from undersampled data acquired with RT-specific receiver coil arrangements.
DeepMRIRec reduced scanning time by a factor of four producing a structural similarity score surpassing the evaluated state-of-the-art method.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic and
radiotherapy (RT) planning tool, offering detailed insights into the anatomy of
the human body. The extensive scan time is stressful for patients, who must
remain motionless in a prolonged imaging procedure that prioritizes reduction
of imaging artifacts. This is challenging for pediatric patients who may
require measures for managing voluntary motions such as anesthesia. Several
computational approaches reduce scan time (fast MRI), by recording fewer
measurements and digitally recovering full information via post-acquisition
reconstruction. However, most fast MRI approaches were developed for diagnostic
imaging, without addressing reconstruction challenges specific to RT planning.
In this work, we developed a deep learning-based method (DeepMRIRec) for MRI
reconstruction from undersampled data acquired with RT-specific receiver coil
arrangements. We evaluated our method against fully sampled data of T1-weighted
MR images acquired from 73 children with brain tumors/surgical beds using loop
and posterior coils (12 channels), with and without applying virtual
compression of coil elements. DeepMRIRec reduced scanning time by a factor of
four producing a structural similarity score surpassing the evaluated
state-of-the-art method (0.960 vs 0.896), thereby demonstrating its potential
for accelerating MRI scanning for RT planning.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - Unsupervised reconstruction of accelerated cardiac cine MRI using Neural
Fields [3.684766600912547]
We propose an unsupervised approach based on implicit neural field representations for cardiac cine MRI (so called NF-cMRI)
The proposed method was evaluated in in-vivo undersampled golden-angle radial multi-coil acquisitions for undersampling factors of 26x and 52x.
arXiv Detail & Related papers (2023-07-24T23:31:36Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Improved Simultaneous Multi-Slice Functional MRI Using Self-supervised
Deep Learning [0.487576911714538]
We extend self-supervised DL reconstruction to simultaneous multi-slice (SMS) imaging.
Our results show that self-supervised DL reduces reconstruction noise and suppresses residual artifacts.
Subsequent fMRI analysis remains unaltered by DL processing, while the improved temporal signal-to-noise ratio produces higher coherence estimates between task runs.
arXiv Detail & Related papers (2021-05-10T17:36:27Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.