Transfer Learning-based Real-time Handgun Detection
- URL: http://arxiv.org/abs/2311.13559v2
- Date: Thu, 23 Nov 2023 19:10:01 GMT
- Title: Transfer Learning-based Real-time Handgun Detection
- Authors: Youssef Elmir, Sid Ahmed Laouar, Larbi Hamdaoui
- Abstract summary: This study employs convolutional neural networks and transfer learning to develop a real-time computer vision system for automatic handgun detection.
The proposed system achieves a precision rate of 84.74%, demonstrating promising performance comparable to related works.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional surveillance systems rely on human attention, limiting their
effectiveness. This study employs convolutional neural networks and transfer
learning to develop a real-time computer vision system for automatic handgun
detection. Comprehensive analysis of online handgun detection methods is
conducted, emphasizing reducing false positives and learning time. Transfer
learning is demonstrated as an effective approach. Despite technical
challenges, the proposed system achieves a precision rate of 84.74%,
demonstrating promising performance comparable to related works, enabling
faster learning and accurate automatic handgun detection for enhanced security.
This research advances security measures by reducing human monitoring
dependence, showcasing the potential of transfer learning-based approaches for
efficient and reliable handgun detection.
Related papers
- Real-Time Weapon Detection Using YOLOv8 for Enhanced Safety [0.0]
The model was trained on a comprehensive dataset containing thousands of images depicting various types of firearms and edged weapons.
We evaluated the model's performance using key metrics such as precision, recall, F1-score, and mean Average Precision (mAP) across multiple Intersection over Union (IoU) thresholds.
arXiv Detail & Related papers (2024-10-23T10:35:51Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study [4.2751988244805466]
In this paper, we use automata learning to derive state machines from network-traffic data.
We apply our approach to a commercial network intrusion detection system developed by our industry partner, RabbitRun Technologies.
Our approach results in an average 67.5% reduction in the number of states and transitions of the learned state machines.
arXiv Detail & Related papers (2024-05-18T02:10:41Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - A False Sense of Security? Revisiting the State of Machine
Learning-Based Industrial Intrusion Detection [9.924435476552702]
Anomaly-based intrusion detection promises to detect novel or unknown attacks on industrial control systems.
Research focuses on machine learning to train them automatically, achieving detection rates upwards of 99%.
Our results highlight an ineffectiveness in detecting unknown attacks, with detection rates dropping to between 3.2% and 14.7%.
arXiv Detail & Related papers (2022-05-18T20:17:33Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and continual learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning, and the continual learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-15T16:41:20Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and any-shot learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning and the any-shot learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-05T02:15:45Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.