Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study
- URL: http://arxiv.org/abs/2405.11141v2
- Date: Sat, 13 Jul 2024 02:07:29 GMT
- Title: Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study
- Authors: Negin Ayoughi, Shiva Nejati, Mehrdad Sabetzadeh, Patricio Saavedra,
- Abstract summary: In this paper, we use automata learning to derive state machines from network-traffic data.
We apply our approach to a commercial network intrusion detection system developed by our industry partner, RabbitRun Technologies.
Our approach results in an average 67.5% reduction in the number of states and transitions of the learned state machines.
- Score: 4.2751988244805466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion detection systems are crucial for network security. Verification of these systems is complicated by various factors, including the heterogeneity of network platforms and the continuously changing landscape of cyber threats. In this paper, we use automata learning to derive state machines from network-traffic data with the objective of supporting behavioural verification of intrusion detection systems. The most innovative aspect of our work is addressing the inability to directly apply existing automata learning techniques to network-traffic data due to the numeric nature of such data. Specifically, we use interpretable machine learning (ML) to partition numeric ranges into intervals that strongly correlate with a system's decisions regarding intrusion detection. These intervals are subsequently used to abstract numeric ranges before automata learning. We apply our ML-enhanced automata learning approach to a commercial network intrusion detection system developed by our industry partner, RabbitRun Technologies. Our approach results in an average 67.5% reduction in the number of states and transitions of the learned state machines, while achieving an average 28% improvement in accuracy compared to using expertise-based numeric data abstraction. Furthermore, the resulting state machines help practitioners in verifying system-level security requirements and exploring previously unknown system behaviours through model checking and temporal query checking. We make our implementation and experimental data available online.
Related papers
- Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System [0.0]
This paper proposes an online attack detection and network traffic classification system.
It combines stream Machine Learning, Deep Learning, and Ensemble Learning technique.
It can detect the presence of malicious traffic flows and classify them according to the type of attack they represent.
arXiv Detail & Related papers (2023-02-18T04:06:24Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data.
Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation.
arXiv Detail & Related papers (2022-06-25T02:28:39Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
We investigate the transferability of adversarial network traffic against machine learning-based intrusion detection systems.
We examine Detect & Reject as a defensive mechanism to limit the effect of the transferability property of adversarial network traffic against machine learning-based intrusion detection systems.
arXiv Detail & Related papers (2021-12-22T17:54:54Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.