論文の概要: Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding
- arxiv url: http://arxiv.org/abs/2403.10395v1
- Date: Fri, 15 Mar 2024 15:27:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:32:11.686704
- Title: Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding
- Title(参考訳): 等方性3D:単一CLIP埋め込みに基づく画像から3D生成
- Authors: Pengkun Liu, Yikai Wang, Fuchun Sun, Jiafang Li, Hang Xiao, Hongxiang Xue, Xinzhou Wang,
- Abstract要約: 入力としてCLIPを埋め込んだ画像のみを取り込む画像から3D生成パイプラインであるIsotropic3Dを提案する。
等方性3Dは、最適化をSDS損失のみを静止させることで、方位角の等方性w.r.t.にすることができる。
- 参考スコア(独自算出の注目度): 16.50466940644004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encouraged by the growing availability of pre-trained 2D diffusion models, image-to-3D generation by leveraging Score Distillation Sampling (SDS) is making remarkable progress. Most existing methods combine novel-view lifting from 2D diffusion models which usually take the reference image as a condition while applying hard L2 image supervision at the reference view. Yet heavily adhering to the image is prone to corrupting the inductive knowledge of the 2D diffusion model leading to flat or distorted 3D generation frequently. In this work, we reexamine image-to-3D in a novel perspective and present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input. Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss. The core of our framework lies in a two-stage diffusion model fine-tuning. Firstly, we fine-tune a text-to-3D diffusion model by substituting its text encoder with an image encoder, by which the model preliminarily acquires image-to-image capabilities. Secondly, we perform fine-tuning using our Explicit Multi-view Attention (EMA) which combines noisy multi-view images with the noise-free reference image as an explicit condition. CLIP embedding is sent to the diffusion model throughout the whole process while reference images are discarded once after fine-tuning. As a result, with a single image CLIP embedding, Isotropic3D is capable of generating multi-view mutually consistent images and also a 3D model with more symmetrical and neat content, well-proportioned geometry, rich colored texture, and less distortion compared with existing image-to-3D methods while still preserving the similarity to the reference image to a large extent. The project page is available at https://isotropic3d.github.io/. The code and models are available at https://github.com/pkunliu/Isotropic3D.
- Abstract(参考訳): SDS(Score Distillation Sampling)を利用した2次元拡散モデルの構築により,画像から画像への3次元生成が著しく進展している。
既存の手法の多くは、2次元拡散モデルからの新たなビューリフトと組み合わせており、参照ビューでハードL2イメージを監督しながら、通常、基準イメージを条件として捉えている。
しかし、画像に強く付着することは、2次元拡散モデルの誘導的知識を劣化させ、平坦あるいは歪んだ3次元生成を頻繁に引き起こす傾向にある。
本稿では,新しい視点で画像-to-3Dを再検討し,画像-to-3D生成パイプラインであるIsotropic3Dについて述べる。
等方性3Dは、最適化をSDS損失のみを静止させることで、方位角の等方性w.r.t.にすることができる。
私たちのフレームワークのコアは、2段階の拡散モデル微調整にあります。
まず,テキストエンコーダを画像エンコーダに置き換えることで,テキストから3Dへの拡散モデルを微調整する。
第二に、ノイズのない参照画像とノイズのない参照画像を組み合わせた明示的マルチビュー注意(EMA)を用いて微調整を行う。
CLIP埋め込みはプロセス全体を通して拡散モデルに送信され、参照イメージは微調整後に一度破棄される。
結果として、単一の画像CLIP埋め込みにより、Isotropic3Dは、相互に一貫した多視点画像を生成することができ、また、より対称的で簡潔なコンテンツ、よく表現された幾何学、リッチな色のテクスチャ、および既存の画像から3Dの手法と比較して歪みの少ない3Dモデルを生成することができる。
プロジェクトページはhttps://isotropic3d.github.io/.com/で公開されている。
コードとモデルはhttps://github.com/pkunliu/Isotropic3Dで公開されている。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - The More You See in 2D, the More You Perceive in 3D [32.578628729549145]
SAP3Dは、任意の数の未提示画像から3D再構成と新しいビュー合成を行うシステムである。
入力画像の数が増えるにつれて,提案手法の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-04-04T17:59:40Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space [77.92350895927922]
潜在拡散モデル(LDM)に基づく3次元画像合成の新しいアプローチであるWildFusionを提案する。
我々の3D対応LCMは、マルチビュー画像や3D幾何学を直接監督することなく訓練されている。
これにより、スケーラブルな3D認識画像合成と、Wild画像データから3Dコンテンツを作成するための有望な研究道が開かれる。
論文 参考訳(メタデータ) (2023-11-22T18:25:51Z) - 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with
2D Diffusion Models [102.75875255071246]
テキスト駆動型スタイリングによる3Dコンテンツ作成は、マルチメディアとグラフィックコミュニティにとって根本的な課題となっている。
2次元拡散モデルから制御可能な外観と幾何学的ガイダンスを付加した3次元メッシュのきめ細かいスタイリングをトリガーする新しい3DStyle-Diffusionモデルを提案する。
論文 参考訳(メタデータ) (2023-11-09T15:51:27Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
Magic123は、高品質でテクスチャ化された3Dメッシュのための、2段階の粗大なアプローチである。
最初の段階では、粗い幾何学を生成するために、神経放射場を最適化する。
第2段階では、視覚的に魅力的なテクスチャを持つ高分解能メッシュを生成するために、メモリ効率のよい微分可能なメッシュ表現を採用する。
論文 参考訳(メタデータ) (2023-06-30T17:59:08Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。