Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning
- URL: http://arxiv.org/abs/2404.10332v1
- Date: Tue, 16 Apr 2024 07:14:32 GMT
- Title: Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning
- Authors: Rui Hu, Yahan Tu, Jitao Sang,
- Abstract summary: We propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models.
The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
- Score: 15.156359255401812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite achieving outstanding performance on various cross-modal tasks, current large vision-language models (LVLMs) still suffer from hallucination issues, manifesting as inconsistencies between their generated responses and the corresponding images. Prior research has implicated that the low quality of instruction data, particularly the skewed balance between positive and negative samples, is a significant contributor to model hallucinations. Recently, researchers have proposed high-quality instruction datasets, such as LRV-Instruction, to mitigate model hallucination. Nonetheless, our investigation reveals that hallucinatory concepts from different LVLMs exhibit specificity, i.e. the distribution of hallucinatory concepts varies significantly across models. Existing datasets did not consider the hallucination specificity of different models in the design processes, thereby diminishing their efficacy in mitigating model hallucination. In this paper, we propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models. Concretely, DFTG consists of two stages: hallucination diagnosis, which extracts the necessary information from the model's responses and images for hallucination diagnosis; and targeted data generation, which generates targeted instruction data based on diagnostic results. The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
Related papers
- ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
Large language models are known to hallucinate when faced with unfamiliar queries.
We find that unfamiliar examples in the models' finetuning data are crucial in shaping these errors.
Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations.
arXiv Detail & Related papers (2024-03-08T18:28:13Z) - Less is More: Mitigating Multimodal Hallucination from an EOS Decision Perspective [55.41815486466186]
Large Multimodal Models (LMMs) often suffer from multimodal hallucinations, wherein they create content that is not present in the visual inputs.
In this paper, we explore a new angle of this issue: overly detailed training data hinders the model's ability to timely terminate generation.
We find that the model assesses the completeness of the entire sequence by comparing the generated text with the image.
arXiv Detail & Related papers (2024-02-22T13:33:13Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Detecting and Preventing Hallucinations in Large Vision Language Models [4.7264116948935975]
M-HalDetect is the first multi-modal hallucination detection dataset for detailed image descriptions.
We train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling.
We find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively.
arXiv Detail & Related papers (2023-08-11T21:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.