論文の概要: Knowledge From the Dark Side: Entropy-Reweighted Knowledge Distillation
for Balanced Knowledge Transfer
- arxiv url: http://arxiv.org/abs/2311.13621v1
- Date: Wed, 22 Nov 2023 08:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 01:49:18.050256
- Title: Knowledge From the Dark Side: Entropy-Reweighted Knowledge Distillation
for Balanced Knowledge Transfer
- Title(参考訳): 暗面からの知識:均衡知識伝達のためのエントロピー重み付き知識蒸留
- Authors: Chi-Ping Su, Ching-Hsun Tseng, Shin-Jye Lee
- Abstract要約: 蒸留(KD)は、より大きな「教師」モデルからの知識を学生に伝達する。
ERKDは教師の予測においてエントロピーを用いてKD損失を標本的に再重み付けする。
私たちのコードはhttps://github.com/cpsu00/ER-KD.comで公開されています。
- 参考スコア(独自算出の注目度): 1.2606200500489302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Distillation (KD) transfers knowledge from a larger "teacher" model
to a compact "student" model, guiding the student with the "dark knowledge"
$\unicode{x2014}$ the implicit insights present in the teacher's soft
predictions. Although existing KDs have shown the potential of transferring
knowledge, the gap between the two parties still exists. With a series of
investigations, we argue the gap is the result of the student's overconfidence
in prediction, signaling an imbalanced focus on pronounced features while
overlooking the subtle yet crucial dark knowledge. To overcome this, we
introduce the Entropy-Reweighted Knowledge Distillation (ER-KD), a novel
approach that leverages the entropy in the teacher's predictions to reweight
the KD loss on a sample-wise basis. ER-KD precisely refocuses the student on
challenging instances rich in the teacher's nuanced insights while reducing the
emphasis on simpler cases, enabling a more balanced knowledge transfer.
Consequently, ER-KD not only demonstrates compatibility with various
state-of-the-art KD methods but also further enhances their performance at
negligible cost. This approach offers a streamlined and effective strategy to
refine the knowledge transfer process in KD, setting a new paradigm in the
meticulous handling of dark knowledge. Our code is available at
https://github.com/cpsu00/ER-KD.
- Abstract(参考訳): 知識蒸留(KD)は、より大きな「教師」モデルからコンパクトな「学生」モデルに知識を伝達し、教師のソフトな予測に現れる暗黙的な洞察を学生に「ダークナレッジ」$\unicode{x2014}で導く。
既存のKDは知識の伝達の可能性を示しているが、両者のギャップは依然として残っている。
一連の調査で、このギャップは生徒の予測の不信感の結果であり、微妙だが重要な暗黒の知識を軽視しながら、明瞭な特徴に不均衡な焦点を向けていると結論づけている。
そこで本研究では,教師の予測におけるエントロピーを利用して,KD損失をサンプルレベルで再加重する手法であるEntropy-Reweighted Knowledge Distillation (ER-KD)を導入する。
ER-KDは、教師のニュアンスな洞察に富む挑戦的な事例について、より単純な事例への重点を減らし、よりバランスの取れた知識伝達を可能にすることを、生徒に正確に再認識する。
その結果、ER-KDは様々な最先端KDメソッドとの互換性を示すだけでなく、無視できるコストでその性能をさらに向上させる。
このアプローチはkdの知識伝達プロセスを洗練するための合理的で効果的な戦略を提供し、暗黒の知識を巧妙に扱う新しいパラダイムを設定します。
私たちのコードはhttps://github.com/cpsu00/er-kdで利用可能です。
関連論文リスト
- Adaptive Explicit Knowledge Transfer for Knowledge Distillation [17.739979156009696]
教師モデルから,非目標クラスの確率分布を効果的に提供することにより,ロジットに基づく知識蒸留の性能を向上させることができることを示す。
本研究では,学習者が暗黙的な知識を適応的に学習できる新たな損失を提案する。
実験結果から, 適応的明示的知識伝達法(AEKT)は, 最先端KD法と比較して性能が向上することが示された。
論文 参考訳(メタデータ) (2024-09-03T07:42:59Z) - Multi Teacher Privileged Knowledge Distillation for Multimodal Expression Recognition [58.41784639847413]
人間の感情は、表情、声調、ボディランゲージ、生理的信号を通じて伝達され知覚される複雑な現象である。
本稿では, 学生に蒸留する前に, 教師の多様な表現を並べ合わせるために, 自己蒸留による多教師PKD(MT-PKDOT)法を提案する。
その結果,提案手法はSOTA PKD法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-08-16T22:11:01Z) - Dynamic Temperature Knowledge Distillation [9.6046915661065]
知識蒸留(KD)領域におけるラベルソフトネスの調整における温度の役割
従来のアプローチでは、KDプロセス全体を通して静的な温度を用いることが多い。
本研究では,教師モデルと学生モデルの両方に対して,動的かつ協調的な温度制御を同時に導入する動的温度知識蒸留(DTKD)を提案する。
論文 参考訳(メタデータ) (2024-04-19T08:40:52Z) - Revisiting Knowledge Distillation for Autoregressive Language Models [88.80146574509195]
知識蒸留(KD)を改善するための簡易かつ効果的な適応型教育法(ATKD)を提案する。
ATKDの中核は、ロート学習を減らし、教育をより多様で柔軟なものにすることだ。
8つのLMタスクの実験は、ATKDの助けを借りて、様々なベースラインのKD手法が一貫した、重要なパフォーマンス向上を達成することを示した。
論文 参考訳(メタデータ) (2024-02-19T07:01:10Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
知識蒸留(KD)は、効率的で軽量なモデルの性能を向上させる。
既存のKD技術のほとんどは、Kulback-Leibler(KL)の発散に依存している。
相関距離とネットワークプルーニングを利用したロバストネス強化知識蒸留(R2KD)を提案する。
論文 参考訳(メタデータ) (2023-11-23T11:34:48Z) - Comparative Knowledge Distillation [102.35425896967791]
伝統的な知識蒸留(KD)は、頻繁な推論のために教師モデルに容易にアクセスできることを前提としている。
本稿では,教師モデルにおけるサンプルの解釈の微妙な違いを学生モデルに理解させるための比較知識蒸留(CKD)を提案する。
CKDは、アートデータ拡張とKDテクニックの状態を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-03T21:55:33Z) - Gradient-Guided Knowledge Distillation for Object Detectors [3.236217153362305]
グラディエント誘導型知識蒸留(GKD)という,物体検出における知識蒸留の新しい手法を提案する。
我々のGKDは勾配情報を用いて、検出損失に大きな影響を及ぼす特徴を識別し、割り当て、生徒が教師から最も関連性の高い特徴を学習できるようにする。
KITTIとCOCO-Trafficデータセットの実験は、対象検出のための知識蒸留における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-03-07T21:09:09Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z) - Residual Knowledge Distillation [96.18815134719975]
本研究は,アシスタント(A)を導入し,さらに知識を蒸留する残留知識蒸留(RKD)を提案する。
このように、S は T の特徴写像を模倣するように訓練され、A はそれらの間の残差を学習することでこの過程を支援する。
提案手法は,CIFAR-100 と ImageNet という,一般的な分類データセットにおいて魅力的な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-02-21T07:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。