論文の概要: Multi Teacher Privileged Knowledge Distillation for Multimodal Expression Recognition
- arxiv url: http://arxiv.org/abs/2408.09035v1
- Date: Fri, 16 Aug 2024 22:11:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-20 22:56:40.593542
- Title: Multi Teacher Privileged Knowledge Distillation for Multimodal Expression Recognition
- Title(参考訳): マルチモーダル表現認識のための教師の専門知識蒸留
- Authors: Muhammad Haseeb Aslam, Marco Pedersoli, Alessandro Lameiras Koerich, Eric Granger,
- Abstract要約: 人間の感情は、表情、声調、ボディランゲージ、生理的信号を通じて伝達され知覚される複雑な現象である。
本稿では, 学生に蒸留する前に, 教師の多様な表現を並べ合わせるために, 自己蒸留による多教師PKD(MT-PKDOT)法を提案する。
その結果,提案手法はSOTA PKD法より優れていることがわかった。
- 参考スコア(独自算出の注目度): 58.41784639847413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human emotion is a complex phenomenon conveyed and perceived through facial expressions, vocal tones, body language, and physiological signals. Multimodal emotion recognition systems can perform well because they can learn complementary and redundant semantic information from diverse sensors. In real-world scenarios, only a subset of the modalities employed for training may be available at test time. Learning privileged information allows a model to exploit data from additional modalities that are only available during training. SOTA methods for PKD have been proposed to distill information from a teacher model (with privileged modalities) to a student model (without privileged modalities). However, such PKD methods utilize point-to-point matching and do not explicitly capture the relational information. Recently, methods have been proposed to distill the structural information. However, PKD methods based on structural similarity are primarily confined to learning from a single joint teacher representation, which limits their robustness, accuracy, and ability to learn from diverse multimodal sources. In this paper, a multi-teacher PKD (MT-PKDOT) method with self-distillation is introduced to align diverse teacher representations before distilling them to the student. MT-PKDOT employs a structural similarity KD mechanism based on a regularized optimal transport (OT) for distillation. The proposed MT-PKDOT method was validated on the Affwild2 and Biovid datasets. Results indicate that our proposed method can outperform SOTA PKD methods. It improves the visual-only baseline on Biovid data by 5.5%. On the Affwild2 dataset, the proposed method improves 3% and 5% over the visual-only baseline for valence and arousal respectively. Allowing the student to learn from multiple diverse sources is shown to increase the accuracy and implicitly avoids negative transfer to the student model.
- Abstract(参考訳): 人間の感情は、表情、声調、ボディランゲージ、生理的信号を通じて伝達され知覚される複雑な現象である。
多様なセンサから相補的および冗長な意味情報を学習できるため、マルチモーダル感情認識システムはよく機能する。
実世界のシナリオでは、トレーニングに使用されるモダリティのサブセットのみがテスト時に利用できます。
特権情報を学ぶことで、モデルはトレーニング中にのみ利用できる追加のモダリティからデータを利用することができる。
PKDのSOTA法は、教師モデルから生徒モデル(特権モダリティなし)への情報を(特権モダリティなし)蒸留するために提案されている。
しかし、これらのPKD法はポイント・ツー・ポイントマッチングを利用しており、関係情報を明示的に捉えていない。
近年, 構造情報を蒸留する方法が提案されている。
しかし、構造的類似性に基づくPKD法は、主に、その頑健さ、正確性、多様なマルチモーダルソースから学ぶ能力を制限する単一の共同教師表現からの学習に限られる。
本稿では, 学生に蒸留する前に, 自己蒸留による多教師PKD (MT-PKDOT) 法を導入し, 多様な教師表現の調整を行った。
MT-PKDOTは、蒸留のための規則化された最適輸送(OT)に基づく構造類似性KD機構を用いる。
MT-PKDOT法はAffwild2とBiovidのデータセットで検証された。
その結果,提案手法はSOTA PKD法より優れていることがわかった。
Biovidデータに対する視覚のみのベースラインを5.5%改善する。
Affwild2データセットでは,それぞれ価値と覚醒値に対して視覚のみの基準値よりも3%,5%向上する。
学生が複数の多様な情報源から学べるようにすることで、精度が向上し、学生モデルへの負の移動を暗黙的に避けることができる。
関連論文リスト
- Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
教師表現のフィルタリングと重み付けのための自己蒸留(SSD)訓練戦略を導入し,タスク関連表現のみから抽出する。
UCR Archiveのウェアラブル/バイオサインデータセット、HARデータセット、画像分類データセットなどの実世界の感情コンピューティングに関する実験結果は、提案したSSD手法が最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2025-04-19T14:08:56Z) - TIE-KD: Teacher-Independent and Explainable Knowledge Distillation for
Monocular Depth Estimation [1.03590082373586]
本稿では、複雑な教師モデルからコンパクトな学生ネットワークへの知識伝達を合理化するTIE-KD(Teacher-Independent Explainable Knowledge Distillation)フレームワークを紹介する。
TIE-KDの基盤はDPM(Depth Probability Map)であり、教師の出力を解釈する説明可能な特徴マップである。
KITTIデータセットの大規模な評価は、TIE-KDが従来の応答に基づくKD法より優れているだけでなく、多様な教師や学生のアーキテクチャで一貫した有効性を示すことを示している。
論文 参考訳(メタデータ) (2024-02-22T07:17:30Z) - Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
マルチモーダル表現認識のための深層学習モデルは, 制御された実験室環境において顕著な性能を示した。
これらのモデルは、トレーニングに使用されるモダリティの可用性と品質のために、荒野で苦労する。
実際には、テスト時に利用できるのはトレーニング時モダリティのサブセットのみである。
特権情報による学習により、モデルはトレーニング中にのみ利用できる追加のモダリティからデータを利用することができる。
論文 参考訳(メタデータ) (2024-01-27T19:44:15Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Knowledge Distillation for Object Detection via Rank Mimicking and
Prediction-guided Feature Imitation [34.441349114336994]
本研究では,一段検出器を蒸留するためのランクミミキング (RM) と予測誘導特徴模擬 (PFI) を提案する。
RMは、教師からの候補ボックスのランクを、蒸留のための新しい種類の知識として捉えている。
PFIは、特徴差と予測差との相関を図り、特徴の模倣を直接して生徒の精度を向上させる。
論文 参考訳(メタデータ) (2021-12-09T11:19:15Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
複数知識伝達(CTSL-MKT)による協調学習を提案する。
複数の学生が協調的な方法で個々のインスタンスとインスタンスの関係の両方から知識を学ぶことができます。
4つの画像データセットの実験とアブレーション研究は、提案したCTSL-MKTが最先端のKD法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-01-21T07:17:04Z) - Multi-head Knowledge Distillation for Model Compression [65.58705111863814]
そこで本研究では,中間層における特徴マッチングのための補助分類器を用いた簡易実装法を提案する。
提案手法は,本論文で提示された従来手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-05T00:49:14Z) - Prime-Aware Adaptive Distillation [27.66963552145635]
知識蒸留は、強力な教師ネットワークからの知識を模倣することで、学生ネットワークの性能を向上させることを目的としている。
従来の有効なハードマイニング法は蒸留には適していない。
プライム・アウェア・アダプティブ蒸留(PAD)は、蒸留におけるプライマーサンプルを知覚し、それらの効果を適応的に強調する。
論文 参考訳(メタデータ) (2020-08-04T10:53:12Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
知識蒸留(KD)は、より大規模な事前訓練されたモデルや(教師)モデルのアンサンブルの監督の下で、コンパクトモデル(学生)を訓練する効果的なモデル圧縮技術として一般的に考えられている。
本研究では,9つの異なるKD手法について広範な研究を行い,知識の獲得と伝達に関する幅広いアプローチについて述べる。
論文 参考訳(メタデータ) (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。