Compact 3D Gaussian Representation for Radiance Field
- URL: http://arxiv.org/abs/2311.13681v2
- Date: Thu, 15 Feb 2024 13:52:53 GMT
- Title: Compact 3D Gaussian Representation for Radiance Field
- Authors: Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, Eunbyung Park
- Abstract summary: We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
- Score: 14.729871192785696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) have demonstrated remarkable potential in
capturing complex 3D scenes with high fidelity. However, one persistent
challenge that hinders the widespread adoption of NeRFs is the computational
bottleneck due to the volumetric rendering. On the other hand, 3D Gaussian
splatting (3DGS) has recently emerged as an alternative representation that
leverages a 3D Gaussisan-based representation and adopts the rasterization
pipeline to render the images rather than volumetric rendering, achieving very
fast rendering speed and promising image quality. However, a significant
drawback arises as 3DGS entails a substantial number of 3D Gaussians to
maintain the high fidelity of the rendered images, which requires a large
amount of memory and storage. To address this critical issue, we place a
specific emphasis on two key objectives: reducing the number of Gaussian points
without sacrificing performance and compressing the Gaussian attributes, such
as view-dependent color and covariance. To this end, we propose a learnable
mask strategy that significantly reduces the number of Gaussians while
preserving high performance. In addition, we propose a compact but effective
representation of view-dependent color by employing a grid-based neural field
rather than relying on spherical harmonics. Finally, we learn codebooks to
compactly represent the geometric attributes of Gaussian by vector
quantization. With model compression techniques such as quantization and
entropy coding, we consistently show over 25$\times$ reduced storage and
enhanced rendering speed, while maintaining the quality of the scene
representation, compared to 3DGS. Our work provides a comprehensive framework
for 3D scene representation, achieving high performance, fast training,
compactness, and real-time rendering. Our project page is available at
https://maincold2.github.io/c3dgs/.
Related papers
- Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction [2.022451212187598]
In recent years, Neural Radiance Fields (NeRF) has revolutionized three-dimensional (3D) reconstruction with its implicit representation.
3D Gaussian Splatting (3D-GS) has departed from the implicit representation of neural networks and instead directly represents scenes as point clouds with Gaussian-shaped distributions.
This paper purposes a refined 3D Gaussian representation for high-quality dynamic scene reconstruction.
Experimental results demonstrate that our method surpasses existing approaches in rendering quality and speed, while significantly reducing the memory usage associated with 3D-GS.
arXiv Detail & Related papers (2024-05-28T07:12:22Z) - F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting [13.653629893660218]
We propose Factorized 3D Gaussian Splatting (F-3DGS) as an alternative to neural radiance field (NeRF) rendering methods.
F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
arXiv Detail & Related papers (2024-05-27T11:55:49Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis.
We propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation.
Our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75times$ compared to vanilla 3DGS.
arXiv Detail & Related papers (2024-03-21T16:28:58Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes.
We introduce a compact scene representation organizing the parameters of 3DGS into a 2D grid with local homogeneity.
Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time.
arXiv Detail & Related papers (2023-12-19T20:18:29Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
We introduce LightGaussian, a novel method to transform 3D Gaussians into a more efficient and compact format.
Drawing inspiration from the concept of Network Pruning, LightGaussian identifies Gaussians that are insignificant in contributing to the scene reconstruction.
We propose a hybrid scheme, VecTree Quantization, to quantize all attributes, resulting in lower bitwidth representations with minimal accuracy losses.
arXiv Detail & Related papers (2023-11-28T21:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.