F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2405.17083v2
- Date: Tue, 28 May 2024 14:19:42 GMT
- Title: F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting
- Authors: Xiangyu Sun, Joo Chan Lee, Daniel Rho, Jong Hwan Ko, Usman Ali, Eunbyung Park,
- Abstract summary: We propose Factorized 3D Gaussian Splatting (F-3DGS) as an alternative to neural radiance field (NeRF) rendering methods.
F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
- Score: 13.653629893660218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neural radiance field (NeRF) has made significant strides in representing 3D scenes and synthesizing novel views. Despite its advancements, the high computational costs of NeRF have posed challenges for its deployment in resource-constrained environments and real-time applications. As an alternative to NeRF-like neural rendering methods, 3D Gaussian Splatting (3DGS) offers rapid rendering speeds while maintaining excellent image quality. However, as it represents objects and scenes using a myriad of Gaussians, it requires substantial storage to achieve high-quality representation. To mitigate the storage overhead, we propose Factorized 3D Gaussian Splatting (F-3DGS), a novel approach that drastically reduces storage requirements while preserving image quality. Inspired by classical matrix and tensor factorization techniques, our method represents and approximates dense clusters of Gaussians with significantly fewer Gaussians through efficient factorization. We aim to efficiently represent dense 3D Gaussians by approximating them with a limited amount of information for each axis and their combinations. This method allows us to encode a substantially large number of Gaussians along with their essential attributes -- such as color, scale, and rotation -- necessary for rendering using a relatively small number of elements. Extensive experimental results demonstrate that F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics.
We introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians.
Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs.
arXiv Detail & Related papers (2024-06-05T05:52:20Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
'EfficientGS' is an advanced approach that optimize 3DGS for high-resolution, large-scale scenes.
We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation.
We propose a selective strategy, limiting Gaussian increase to key redundant primitives, thereby enhancing the representational efficiency.
arXiv Detail & Related papers (2024-04-19T10:32:30Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
We introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format.
Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction.
LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework.
arXiv Detail & Related papers (2023-11-28T21:39:20Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.