Single-shot Quantum Signal Processing Interferometry
- URL: http://arxiv.org/abs/2311.13703v2
- Date: Sat, 13 Jul 2024 19:00:27 GMT
- Title: Single-shot Quantum Signal Processing Interferometry
- Authors: Jasmine Sinanan-Singh, Gabriel L. Mintzer, Isaac L. Chuang, Yuan Liu,
- Abstract summary: We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing.
We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit.
- Score: 3.431120541553662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator's quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era.
Related papers
- SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation [12.591173729459427]
We show that it is possible to leverage a pre-trained neural network to directly generate the QSP circuit for arbitrary quantum state.
Our study makes a steady step towards a universal neural designer for approximate QSP.
arXiv Detail & Related papers (2024-08-10T04:39:05Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Quantum Signal Processing with the one-dimensional quantum Ising model [0.0]
Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine properties of quantum systems.
We provide examples and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation, to quantum control.
arXiv Detail & Related papers (2023-09-08T18:01:37Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Direct tomography of quantum states and processes via weak measurements
of Pauli spin operators on an NMR quantum processor [3.818504253546488]
We present an efficient weak measurement-based scheme for direct quantum state tomography (DQST) and direct quantum process tomography (DQPT)
We experimentally implement these weak measurement-based DQST and DQPT protocols and use them to accurately characterize several two-qubit quantum states and single-qubit quantum processes.
arXiv Detail & Related papers (2023-03-13T06:40:19Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Neural networks for Bayesian quantum many-body magnetometry [0.0]
Entangled quantum many-body systems can be used as sensors that enable the estimation of parameters with a precision larger than that achievable with ensembles of individual quantum detectors.
This entails a complexity that can hinder the applicability of Bayesian inference techniques.
We show how to circumvent these issues by using neural networks that faithfully reproduce the dynamics of quantum many-body sensors.
arXiv Detail & Related papers (2022-12-22T22:13:49Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.