論文の概要: 3D-MIR: A Benchmark and Empirical Study on 3D Medical Image Retrieval in
Radiology
- arxiv url: http://arxiv.org/abs/2311.13752v1
- Date: Thu, 23 Nov 2023 00:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 00:59:40.860378
- Title: 3D-MIR: A Benchmark and Empirical Study on 3D Medical Image Retrieval in
Radiology
- Title(参考訳): 3D-MIR:放射線画像検索のベンチマークと実証的研究
- Authors: Asma Ben Abacha, Alberto Santamaria-Pang, Ho Hin Lee, Jameson Merkow,
Qin Cai, Surya Teja Devarakonda, Abdullah Islam, Julia Gong, Matthew P.
Lungren, Thomas Lin, Noel C Codella, Ivan Tarapov
- Abstract要約: 3D画像検索の分野はまだ発展途上であり、確立された評価ベンチマーク、包括的なデータセット、徹底的な研究が欠如している。
本稿では,3次元医用画像検索のための新しいベンチマーク(3D-MIR)を提案する。
このベンチマークを用いて,一般的なマルチモーダル基礎モデルの2次元スライス,3次元ボリューム,マルチモーダル埋め込みをクエリとして利用する,多様な検索戦略を探索する。
- 参考スコア(独自算出の注目度): 6.851500027718433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing use of medical imaging in healthcare settings presents a
significant challenge due to the increasing workload for radiologists, yet it
also offers opportunity for enhancing healthcare outcomes if effectively
leveraged. 3D image retrieval holds potential to reduce radiologist workloads
by enabling clinicians to efficiently search through diagnostically similar or
otherwise relevant cases, resulting in faster and more precise diagnoses.
However, the field of 3D medical image retrieval is still emerging, lacking
established evaluation benchmarks, comprehensive datasets, and thorough
studies. This paper attempts to bridge this gap by introducing a novel
benchmark for 3D Medical Image Retrieval (3D-MIR) that encompasses four
different anatomies imaged with computed tomography. Using this benchmark, we
explore a diverse set of search strategies that use aggregated 2D slices, 3D
volumes, and multi-modal embeddings from popular multi-modal foundation models
as queries. Quantitative and qualitative assessments of each approach are
provided alongside an in-depth discussion that offers insight for future
research. To promote the advancement of this field, our benchmark, dataset, and
code are made publicly available.
- Abstract(参考訳): 医療現場での医療画像の利用の増加は、放射線科医の作業負荷の増加によって大きな課題となっているが、効果的に活用すれば医療結果を高める機会も提供する。
3d画像検索は、臨床医が診断的に類似または関連のある症例を効率的に検索することで、放射線科医の作業を減らす可能性を秘めている。
しかし、3次元医用画像検索の分野は、確立された評価ベンチマーク、包括的なデータセット、徹底的な研究が欠如している。
本稿では,3次元医用画像検索(3D-MIR)の新たなベンチマークを導入することで,このギャップを埋めようとしている。
このベンチマークを用いて,一般的なマルチモーダル基礎モデルの2次元スライス,3次元ボリューム,マルチモーダル埋め込みをクエリとして利用する,多様な検索戦略を探索する。
各アプローチの定量的で質的な評価は、将来の研究への洞察を提供する詳細な議論とともに提供される。
この分野の進歩を促進するため、我々のベンチマーク、データセット、コードを公開しています。
関連論文リスト
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Content-Based Image Retrieval for Multi-Class Volumetric Radiology Images: A Benchmark Study [0.6249768559720122]
非医用画像上の事前訓練された教師なしモデルからの埋め込みに対して、医用画像上の事前訓練された教師なしモデルからの埋め込みをベンチマークした。
ボリューム画像の検索には,テキストマッチングにインスパイアされた遅延インタラクションのランク付け手法を採用する。
論文 参考訳(メタデータ) (2024-05-15T13:34:07Z) - M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models [49.5030774873328]
これまでの研究は主に2Dの医療画像に焦点を合わせてきた。
120K画像テキスト対と62K命令応答対からなる大規模3次元マルチモーダル医療データセットM3D-Dataを提案する。
また,新しい3次元マルチモーダル・メディカル・ベンチマークであるM3D-Benchを導入し,8つのタスクにまたがる自動評価を容易にする。
論文 参考訳(メタデータ) (2024-03-31T06:55:12Z) - BIMCV-R: A Landmark Dataset for 3D CT Text-Image Retrieval [44.92177279141073]
我々は,200万枚以上のスライスを含む8,069個の3次元CTボリュームのデータセットを,それぞれの放射線学的報告と組み合わせて提示する。
次に、大規模な言語モデルの可能性を活用した検索戦略であるMedFinderを構築します。
これは、テキスト・トゥ・イメージ、画像・トゥ・テキスト、キーワードベースの検索タスクを容易に行えるシステムを開発するための予備的なステップである。
論文 参考訳(メタデータ) (2024-03-24T03:10:07Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - Medical Image Retrieval Using Pretrained Embeddings [0.6827423171182154]
トレーニングや微調整の必要なく,事前訓練ネットワークを用いて医用画像検索を行うことが可能であることを示す。
プレトレーニングを施した埋込装置を用いて, 運動量, 身体領域, 臓器レベルでの様々なタスクに対する1のリコールを達成した。
論文 参考訳(メタデータ) (2023-11-22T17:42:33Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
この研究はRadFMと呼ばれるRadlogy Foundation Modelの開発を開始することを目的としている。
われわれの知る限りでは、これは2Dスキャンと3Dスキャンによる、最初の大規模で高品質な医療用ビジュアル言語データセットである。
本稿では,モダリティ認識,疾患診断,視覚的質問応答,レポート生成,合理的診断の5つのタスクからなる新しい評価ベンチマークRadBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T17:00:38Z) - Medical Image Segmentation using 3D Convolutional Neural Networks: A
Review [25.864941088823343]
コンピュータ支援医療画像解析は,専門医の専門的臨床診断を支援し,適切な治療計画を決定する上で重要な役割を担っている。
現在、畳み込みニューラルネットワーク(CNN)が医療画像解析に好まれている。
3Dイメージングシステムの急速な進歩と優れたハードウェアとソフトウェアのサポートの可用性により、医用画像解析において3D深層学習法が人気を集めている。
論文 参考訳(メタデータ) (2021-08-19T03:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。