論文の概要: RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining
- arxiv url: http://arxiv.org/abs/2503.04653v1
- Date: Thu, 06 Mar 2025 17:43:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:02.229856
- Title: RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining
- Title(参考訳): RadIR: 放射線医学レポートマイニングによるマルチグレード医用画像検索のためのスケーラブルなフレームワーク
- Authors: Tengfei Zhang, Ziheng Zhao, Chaoyi Wu, Xiao Zhou, Ya Zhang, Yangfeng Wang, Weidi Xie,
- Abstract要約: 本稿では,複数の粒度で画像の類似度を決定するために,高密度ラジオロジーレポートを利用した新しい手法を提案する。
我々は、胸部X線用MIMIC-IRとCTスキャン用CTRATE-IRの2つの総合的な医用画像検索データセットを構築した。
RadIR-CXR と Model-ChestCT という2つの検索システムを開発し,従来の画像画像検索と画像レポート検索に優れた性能を示す。
- 参考スコア(独自算出の注目度): 48.21287619304126
- License:
- Abstract: Developing advanced medical imaging retrieval systems is challenging due to the varying definitions of `similar images' across different medical contexts. This challenge is compounded by the lack of large-scale, high-quality medical imaging retrieval datasets and benchmarks. In this paper, we propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities in a scalable and fully automatic manner. Using this approach, we construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans, providing detailed image-image ranking annotations conditioned on diverse anatomical structures. Furthermore, we develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks. These systems also enable flexible, effective image retrieval conditioned on specific anatomical structures described in text, achieving state-of-the-art results on 77 out of 78 metrics.
- Abstract(参考訳): 先進的な医用画像検索システムの開発は, 様々な医療状況における「類似画像」の定義が変化しているため, 困難である。
この課題は、大規模で高品質な医用画像検索データセットとベンチマークの欠如によって複雑化している。
本稿では,高密度ラジオグラフィーレポートを利用して,複数の粒度における画像の類似度を,スケーラブルかつ完全自動で定義する手法を提案する。
この手法を用いて,胸部X線用MIMIC-IRとCTスキャン用CTRATE-IRの2つの総合的な医用画像画像検索データセットを構築し,様々な解剖学的構造に規定された詳細な画像画像ランキングアノテーションを提供する。
さらに、従来の画像画像検索と画像レポート検索において優れた性能を示すRadIR-CXRとModel-ChestCTという2つの検索システムを開発した。
これらのシステムは、テキストで記述された特定の解剖学的構造に基づいて、フレキシブルで効果的な画像検索を可能にし、78のメトリクスのうち77の最先端の結果を達成する。
関連論文リスト
- ROCOv2: Radiology Objects in COntext Version 2, an Updated Multimodal Image Dataset [4.382166835379353]
本稿では,放射線画像と関連する医療概念とキャプションからなるマルチモーダルデータセットである,COntext version 2 (ROCOv2)について紹介する。
2018年に公開されたROCOデータセットの更新版であり、2018年以来、PMCに35,705の新しいイメージが追加されている。
このデータセットは79,789枚の画像で構成され、ImageCLEFmedical Caption 2023のコンセプト検出とキャプション予測タスクにおいて、小さな修正が加えられている。
論文 参考訳(メタデータ) (2024-05-16T11:44:35Z) - Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology [0.14631663747888957]
コンテンツに基づく画像検索は、放射線学における診断支援と医学研究を大幅に改善する可能性がある。
現在のCBIRシステムは、特定の病態の専門化による限界に直面しており、実用性は制限されている。
本稿では,コンテンツに基づく医用画像検索のための特徴抽出器として視覚基盤モデルを提案する。
論文 参考訳(メタデータ) (2024-03-11T10:06:45Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Structurally aware bidirectional unpaired image to image translation
between CT and MR [0.14788776577018314]
深層学習技術は、複数の画像モダリティ間の画像変換に画像の可能性を活用するのに役立つ。
これらの技術は、MRI情報のフィードバックにより、CT下で外科的計画を実行するのに役立つ。
論文 参考訳(メタデータ) (2020-06-05T11:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。