論文の概要: Molecular Identification and Peak Assignment: Leveraging Multi-Level
Multimodal Alignment on NMR
- arxiv url: http://arxiv.org/abs/2311.13817v2
- Date: Thu, 29 Feb 2024 02:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 18:11:30.550484
- Title: Molecular Identification and Peak Assignment: Leveraging Multi-Level
Multimodal Alignment on NMR
- Title(参考訳): 分子同定とピークアサインメント:NMRによるマルチレベルマルチモーダルアライメントの活用
- Authors: Hao Xu, Zhengyang Zhou, Pengyu Hong
- Abstract要約: 本稿では,知識誘導型インスタンスワイズ識別(K-M3AID)を用いたマルチレベルマルチモーダルアライメント(Multi-Level Multimodal Alignment)を提案する。
K-M3AIDは、グラフレベルのアライメントモジュール、ノードレベルのアライメントモジュール、通信チャネルの3つの主要なモジュールを持つ二重協調型コントラスト学習アーキテクチャを採用している。
経験的検証は、複数のゼロショットタスクにおけるK-M3AIDの有効性を裏付ける。
- 参考スコア(独自算出の注目度): 13.214794693837785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclear magnetic resonance (NMR) spectroscopy plays an essential role in
deciphering molecular structure and dynamic behaviors. While AI-enhanced NMR
prediction models hold promise, challenges still persist in tasks such as
molecular retrieval, isomer recognition, and peak assignment. In response, this
paper introduces a novel solution, Multi-Level Multimodal Alignment with
Knowledge-Guided Instance-Wise Discrimination (K-M3AID), which establishes
correspondences between two heterogeneous modalities: molecular graphs and NMR
spectra. K-M3AID employs a dual-coordinated contrastive learning architecture
with three key modules: a graph-level alignment module, a node-level alignment
module, and a communication channel. Notably, K-M3AID introduces
knowledge-guided instance-wise discrimination into contrastive learning within
the node-level alignment module. In addition, K-M3AID demonstrates that skills
acquired during node-level alignment have a positive impact on graph-level
alignment, acknowledging meta-learning as an inherent property. Empirical
validation underscores K-M3AID's effectiveness in multiple zero-shot tasks.
- Abstract(参考訳): 核磁気共鳴(nmr)分光法は分子構造と動的挙動の解読に必須の役割を果たす。
aiによるnmr予測モデルが期待されている一方で、分子検索、異性体認識、ピーク割り当てといったタスクでは依然として課題が続いている。
そこで本研究では,分子グラフとNMRスペクトルの2つの不均一なモードの対応性を確立する,知識誘導型インスタンスワイズ識別を用いたマルチレベルマルチモーダルアライメント(K-M3AID)を提案する。
K-M3AIDは、グラフレベルのアライメントモジュール、ノードレベルのアライメントモジュール、通信チャネルの3つの主要なモジュールを持つ二重協調型コントラスト学習アーキテクチャを採用している。
特に、K-M3AIDは、ノードレベルのアライメントモジュール内での対照的な学習に知識誘導型インスタンスワイド識別を導入している。
さらに、K-M3AIDは、ノードレベルのアライメント中に獲得したスキルがグラフレベルのアライメントに肯定的な影響を与えることを示し、メタラーニングを固有の特性として認める。
経験的検証は、複数のゼロショットタスクにおけるK-M3AIDの有効性を裏付ける。
関連論文リスト
- DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - ANN-Enhanced Detection of Multipartite Entanglement in a Three-Qubit NMR Quantum Processor [2.715284063484557]
人工ニューラルネットワーク(ANN)モデルを用いて,実験によって生成された3量子状態の絡み合いクラスを同定する。
ANNモデルは、州における真のマルチパーティ・エンタングルメント(GME)の存在を検出することもできる。
論文 参考訳(メタデータ) (2024-09-29T15:34:11Z) - Adapting Differential Molecular Representation with Hierarchical Prompts for Multi-label Property Prediction [2.344198904343022]
HiPMは階層的に誘導される分子表現学習フレームワークである。
私たちのフレームワークは、分子表現(MRE)とタスク認識プロンプタ(TAP)の2つのコアコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-29T03:10:21Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Unified Molecular Modeling via Modality Blending [35.16755562674055]
我々は,新しい「Blund-then-predict」自己教師型学習法(MoleBLEND)を導入する。
MoleBLENDは、異なるモジュラリティからの原子関係をマトリックス符号化のための1つの統一された関係にブレンドし、2D構造と3D構造の両方のモダリティ固有情報を復元する。
実験によると、MoleBLENDは主要な2D/3Dベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-07-12T15:27:06Z) - Connecting Multi-modal Contrastive Representations [50.26161419616139]
マルチモーダルコントラスト表現学習は、異なるモダリティを意味的に共有された空間に符号化することを目的としている。
本稿では,C-MCR(Connecting Multi-Modal Contrastive Representations)と呼ばれるペアデータなしでMCRを学習するための,新たな学習効率向上手法を提案する。
C-MCRは、オーディオ画像検索、オーディオ画像のソースローカライゼーション、および対実的なオーディオ画像認識タスクにおいて、最先端のオーディオ映像のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-05-22T09:44:39Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
マルチレベル・クロスモーダルアライメントを学習するためのUnify, Align, then Refine (UAR)アプローチを提案する。
本稿では,Latent Space Unifier,Cross-modal Representation Aligner,Text-to-Image Refinerの3つの新しいモジュールを紹介する。
IU-XrayおよびMIMIC-CXRベンチマークデータセットの実験と解析は、UARの様々な最先端手法に対する優位性を実証している。
論文 参考訳(メタデータ) (2023-03-28T12:42:12Z) - Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations [2.17167311150369]
3次元分子コンバータのねじれ角を処理するSE(3)不変モデルを設計する。
本研究では, 学習空間における異なる立体異性体のコンホメータを識別するコントラスト学習, キラル中心をR/Sに分類する学習, エンテロマーが円偏光でどのように回転するかの予測, タンパクポケット内のドッキングスコアによるエナンチオマーのランキングの4つのベンチマークを用いて実験を行った。
論文 参考訳(メタデータ) (2021-10-08T21:25:47Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
病理組織像における教師なし核分割のためのCycle Consistency Panoptic Domain Adaptive Mask R-CNN(CyC-PDAM)アーキテクチャを提案する。
まず,合成画像中の補助的な生成物を除去するための核塗布機構を提案する。
第二に、ドメイン識別器を持つセマンティックブランチは、パンプトレベルのドメイン適応を実現するように設計されている。
論文 参考訳(メタデータ) (2020-05-05T11:08:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。