論文の概要: Adversarial defense based on distribution transfer
- arxiv url: http://arxiv.org/abs/2311.13841v1
- Date: Thu, 23 Nov 2023 08:01:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 13:16:38.662741
- Title: Adversarial defense based on distribution transfer
- Title(参考訳): 分布移動に基づく敵防衛
- Authors: Jiahao Chen, Diqun Yan, Li Dong,
- Abstract要約: 敵対的な例の存在は、ディープラーニングモデルとその応用に重大な脅威をもたらす。
既存の防御方法は、敵の例に対してある種の弾力性を提供するが、しばしば精度の低下と一般化性能に悩まされる。
本稿では,拡散モデルの分散伝達能力を利用した分散シフトに基づく防御手法を提案する。
- 参考スコア(独自算出の注目度): 22.14684430074648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The presence of adversarial examples poses a significant threat to deep learning models and their applications. Existing defense methods provide certain resilience against adversarial examples, but often suffer from decreased accuracy and generalization performance, making it challenging to achieve a trade-off between robustness and generalization. To address this, our paper interprets the adversarial example problem from the perspective of sample distribution and proposes a defense method based on distribution shift, leveraging the distribution transfer capability of a diffusion model for adversarial defense. The core idea is to exploit the discrepancy between normal and adversarial sample distributions to achieve adversarial defense using a pretrained diffusion model. Specifically, an adversarial sample undergoes a forward diffusion process, moving away from the source distribution, followed by a reverse process guided by the protected model (victim model) output to map it back to the normal distribution. Experimental evaluations on CIFAR10 and ImageNet30 datasets are conducted, comparing with adversarial training and input preprocessing methods. For infinite-norm attacks with 8/255 perturbation, accuracy rates of 78.1% and 83.5% are achieved, respectively. For 2-norm attacks with 128/255 perturbation, accuracy rates are 74.3% and 82.5%. Additional experiments considering perturbation amplitude, diffusion iterations, and adaptive attacks also validate the effectiveness of the proposed method. Results demonstrate that even when the attacker has knowledge of the defense, the proposed distribution-based method effectively withstands adversarial examples. It fills the gaps of traditional approaches, restoring high-quality original samples and showcasing superior performance in model robustness and generalization.
- Abstract(参考訳): 敵対的な例の存在は、ディープラーニングモデルとその応用に重大な脅威をもたらす。
既存の防御手法は、敵の例に対してある種の弾力性を提供するが、しばしば精度の低下と一般化性能に悩まされ、堅牢性と一般化の間のトレードオフを達成できない。
そこで本研究では, サンプル分布の観点から, 逆例問題を解釈し, 拡散モデルの分布伝達能力を利用して, 分布シフトに基づく防御手法を提案する。
その中核となる考え方は、正規分布と対向分布の差を利用して、事前訓練された拡散モデルを用いて対向防御を実現することである。
具体的には、逆方向のサンプルは、ソース分布から離れて前方拡散プロセスを実行し、その後、保護されたモデル(最適化モデル)出力で導かれる逆プロセスで通常の分布にマッピングする。
CIFAR10とImageNet30データセットの実験評価を行った。
8/255摂動を持つ無限ノルム攻撃では、それぞれ78.1%と83.5%の精度が達成されている。
128/255の摂動を持つ2ノルム攻撃の場合、精度は74.3%と82.5%である。
また, 摂動振幅, 拡散反復, 適応攻撃を考慮した追加実験を行い, 提案手法の有効性を検証した。
提案手法は,攻撃者が防御について知識を持っている場合でも,敵の例に効果的に対処できることを示す。
従来のアプローチのギャップを埋め、高品質なオリジナルサンプルを復元し、モデルの堅牢性と一般化において優れたパフォーマンスを示す。
関連論文リスト
- CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense [61.78357530675446]
人間は、本質的な要因のみに基づいて判断するので、微妙な操作によって騙されるのは難しい。
この観察に触発されて、本質的なラベル因果因子を用いたラベル生成をモデル化し、ラベル非因果因子を組み込んでデータ生成を支援する。
逆の例では、摂動を非因果因子として識別し、ラベル因果因子のみに基づいて予測することを目的としている。
論文 参考訳(メタデータ) (2024-10-30T15:06:44Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Struggle with Adversarial Defense? Try Diffusion [8.274506117450628]
アドリア攻撃は微妙な摂動を導入して誤分類を引き起こす。
拡散に基づく敵の訓練は、しばしば収束の課題と高い計算費用に遭遇する。
本稿では,これらの問題を克服するために,真性最大化拡散(TMDC)を提案する。
論文 参考訳(メタデータ) (2024-04-12T06:52:40Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
拡散モデルが画像生成の主流のアプローチとして登場した。
トレーニングの収束が遅く、サンプリングのカラーシフトの問題に悩まされている。
本稿では,これらの障害は,既定のトレーニングパラダイムに固有のバイアスや準最適性に大きく起因していると考えられる。
論文 参考訳(メタデータ) (2023-10-12T16:04:41Z) - Robust Classification via a Single Diffusion Model [37.46217654590878]
ロバスト拡散(英: Robust Diffusion、RDC)は、事前学習された拡散モデルから構築され、逆向きに堅牢な生成型分類器である。
RDCは75.67%で様々な$ell_infty$標準有界適応攻撃に対して、CIFAR-10で$epsilon_infty/255$で堅牢な精度を達成した。
論文 参考訳(メタデータ) (2023-05-24T15:25:19Z) - Adversarial Amendment is the Only Force Capable of Transforming an Enemy
into a Friend [29.172689524555015]
敵対的攻撃は、誤解を招く行動のため、ニューラルネットワークに対する大きな脅威と見なされることが多い。
本稿では, 敵攻撃を応用して, 正しい修正を行えば, ニューラルモデルを改善するという, 逆の視点を提示する。
論文 参考訳(メタデータ) (2023-05-18T07:13:02Z) - Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning [24.10329164911317]
多重漸近正規分布攻撃(MultiANDA)という手法を提案する。
我々は勾配上昇(SGA)の正規性を利用して摂動の後方分布を近似する。
提案手法は、防御の有無にかかわらず、ディープラーニングモデルに対する10の最先端のブラックボックス攻撃より優れる。
論文 参考訳(メタデータ) (2022-09-24T08:57:10Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
対向騒音の干渉を軽減するため,様々な対向防御技術が提案されている。
プレプロセス法は、ロバストネス劣化効果に悩まされることがある。
この負の効果の潜在的な原因は、敵の訓練例が静的であり、前処理モデルとは独立していることである。
本稿では,JATP(Joint Adversarial Training Based Pre-processing)防衛法を提案する。
論文 参考訳(メタデータ) (2021-06-10T01:45:32Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。