論文の概要: Exact Combinatorial Optimization with Temporo-Attentional Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2311.13843v1
- Date: Thu, 23 Nov 2023 08:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 00:35:10.005137
- Title: Exact Combinatorial Optimization with Temporo-Attentional Graph Neural
Networks
- Title(参考訳): テンポアテンショングラフニューラルネットワークによる完全組合せ最適化
- Authors: Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang
- Abstract要約: 本稿では,機械学習アルゴリズムの時間的特徴と注意点の2つの重要な側面について検討する。
分岐とバウンド(B&B)アルゴリズムにおける変数選択のタスクでは、時間情報と二部グラフの注意を組み込むことで、解法の性能が向上すると主張している。
- 参考スコア(独自算出の注目度): 17.128882942475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization finds an optimal solution within a discrete set of
variables and constraints. The field has seen tremendous progress both in
research and industry. With the success of deep learning in the past decade, a
recent trend in combinatorial optimization has been to improve state-of-the-art
combinatorial optimization solvers by replacing key heuristic components with
machine learning (ML) models. In this paper, we investigate two essential
aspects of machine learning algorithms for combinatorial optimization: temporal
characteristics and attention. We argue that for the task of variable selection
in the branch-and-bound (B&B) algorithm, incorporating the temporal information
as well as the bipartite graph attention improves the solver's performance. We
support our claims with intuitions and numerical results over several standard
datasets used in the literature and competitions. Code is available at:
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=047c6cf2-8463-40d7-b92f-7b2ca998e935
- Abstract(参考訳): 組合せ最適化は、変数と制約の離散集合の中で最適な解を見つける。
この分野は研究と産業の両方で大きく進歩している。
過去10年間のディープラーニングの成功により、組合せ最適化の最近の傾向は、キーヒューリスティックコンポーネントを機械学習(ML)モデルに置き換えることで、最先端の組合せ最適化問題を改善している。
本稿では,組合せ最適化のための機械学習アルゴリズムの2つの重要な側面について考察する。
分岐とバウンド(B&B)アルゴリズムにおける変数選択のタスクでは、時間情報と二部グラフの注意を組み込むことで、解法の性能が向上すると主張している。
文献やコンペティションで使用されるいくつかの標準データセットに対する直観と数値結果による主張を支持する。
コードは、https://developer.huaweicloud.com/develop/aigallery/notebook/detail?
id=047c6cf2-8463-40d7-b92f-7b2ca998e935
関連論文リスト
- Context-Aware Ensemble Learning for Time Series [11.716677452529114]
本稿では,ベースモデルの特徴ベクトルの結合である特徴のスーパーセットを用いて,ベースモデル予測を効果的に組み合わせたメタ学習手法を提案する。
我々のモデルは、ベースモデルの予測を機械学習アルゴリズムの入力として使用するのではなく、問題の状態に基づいて各時点における最良の組み合わせを選択する。
論文 参考訳(メタデータ) (2022-11-30T10:36:13Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - The Machine Learning for Combinatorial Optimization Competition (ML4CO):
Results and Insights [59.93939636422896]
ML4COは、キーコンポーネントを置き換えることで最先端の最適化問題を解決することを目的としている。
このコンペティションでは、最高の実現可能なソリューションを見つけること、最も厳密な最適性証明書を生成すること、適切なルーティング設定を提供すること、という3つの課題があった。
論文 参考訳(メタデータ) (2022-03-04T17:06:00Z) - Yordle: An Efficient Imitation Learning for Branch and Bound [1.6758573326215689]
本研究では,2021年のNeurIPS Machine Learning for Combinatorial Optimization (ML4CO)コンペティションにおいて,チームqqyが得たソリューションと洞察を紹介する。
我々のソリューションは、ブランチ・アンド・バウンド(B&B)のパフォーマンス改善のための、Yordleという名前の非常に効率的な模倣学習フレームワークです。
我々の実験では、Yordleは、決定モデルのトレーニングに要する時間とデータの量を大幅に削減しながら、競争によって採用されるベースラインアルゴリズムを大幅に上回っている。
論文 参考訳(メタデータ) (2022-02-02T14:46:30Z) - ML4CO: Is GCNN All You Need? Graph Convolutional Neural Networks Produce
Strong Baselines For Combinatorial Optimization Problems, If Tuned and
Trained Properly, on Appropriate Data [8.09193285529236]
本稿では,2021年のNeurIPS Machine Learning for Combinatorial Optimization (ML4CO)コンペでHuawei EI-OROASチームが学んだソリューションと教訓を要約する。
チームの応募は最終ランキングで2位となり、第1位に近かった。
簡単なグラフ畳み込みニューラルネットワーク(GCNN)は、トレーニングやチューニングを適切に行うと、最先端の結果が得られると論じる。
論文 参考訳(メタデータ) (2021-12-22T22:40:13Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Combinatorial optimization and reasoning with graph neural networks [7.8107109904672365]
コンビナート最適化は、オペレーション研究とコンピュータサイエンスにおいて確立された領域です。
近年、機械学習、特にグラフニューラルネットワーク(GNN)をタスクの重要なビルディングブロックとして使用することへの関心が高まっています。
論文 参考訳(メタデータ) (2021-02-18T18:47:20Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z) - Learning fine-grained search space pruning and heuristics for
combinatorial optimization [5.72274610208488]
本稿では,機械学習技術を利用して正確な最適化アルゴリズムをスケールアップするフレームワークを提案する。
我々のフレームワークは、問題インスタンスのサイズを減らすために、要素を刈り取るという比較的単純なタスクを学習します。
我々のフレームワークは入力グラフのかなりの部分を取り除き、なおも最大傾きのほとんどを検出可能であることを示す。
論文 参考訳(メタデータ) (2020-01-05T13:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。