Quantum Simulation of Bound-State-Enhanced Quantum Metrology
- URL: http://arxiv.org/abs/2311.14020v2
- Date: Fri, 3 May 2024 03:20:11 GMT
- Title: Quantum Simulation of Bound-State-Enhanced Quantum Metrology
- Authors: Cheng-Ge Liu, Cong-Wei Lu, Na-Na Zhang, Qing Ai,
- Abstract summary: We find that the error of the measurement can vanish due to the existence of the bound state.
By both analytical and numerical simulations, we prove the $t-1$ scaling of the measurement error can be recovered when there is a bound state in the hybrid system.
- Score: 1.083709868255469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology explores quantum effects to improve the measurement accuracy of some physical quantities beyond the classical limit. However, due to the interaction between the system and the environment, the decoherence can significantly reduce the accuracy of the measurement. Many methods have been proposed to restore the accuracy of the measurement in the long-time limit. Recently, it has been found that the bound state can assist the error-free measurement and recover the $t^{-1}$ scaling [K. Bai, Z. Peng, H. G. Luo, and J. H. An, Phys. Rev. Lett. 123, 040402 (2019)]. Here, by using $N$-qubits, we propose a method to simulate the open quantum dynamics of the hybrid system including one atom and coupled resonators. We find that the error of the measurement can vanish as the time increases due to the existence of the bound state. By both analytical and numerical simulations, we prove the $t^{-1}$ scaling of the measurement error can be recovered when there is a bound state in the hybrid system. Interestingly, we observe that there are perfect oscillations which can be used for the evaluation of the atomic transition frequency. For a finite-$N$, the duration of the perfect oscillations doubles as one more qubit is involved.
Related papers
- Enhanced quantum sensing mediated by a cavity in open systems [0.0]
We simulate the dynamics of systems with $N$ = 1-20 qubits coupled to a cavity.
We investigate the scaling of the uncertainty in the estimate of the qubit-cavity coupling with the number of qubits.
arXiv Detail & Related papers (2023-12-08T00:41:38Z) - A hybrid method for quantum dynamics simulation [2.6340447642310383]
We propose a hybrid approach to simulate quantum many body dynamics by combining Trotter based quantum algorithm with classical dynamic mode decomposition.
Our method predicts observables of a quantum state in the long time by using data from a set of short time measurements from a quantum computer.
arXiv Detail & Related papers (2023-07-27T23:43:13Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Provably accurate simulation of gauge theories and bosonic systems [2.406160895492247]
We develop methods for bounding the rate of growth of local quantum numbers.
For the Hubbard-Holstein model, we compute a bound on $Lambda$ that achieves accuracy $epsilon$.
We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution.
arXiv Detail & Related papers (2021-10-13T18:00:02Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Heisenberg-Limited Waveform Estimation with Solid-State Spins in Diamond [15.419555338671772]
Heisenberg limit in arbitrary waveform estimation is quite different with parameter estimation.
It is still a non-trivial challenge to generate a large number of exotic quantum entangled states to achieve this quantum limit.
This work provides an essential step towards realizing quantum-enhanced structure recognition in a continuous space and time.
arXiv Detail & Related papers (2021-05-13T01:52:18Z) - Measurement, information, and disturbance in Hamiltonian mechanics [0.0]
Measurement in classical physics is examined as a process involving the joint evolution of object-system and measuring apparatus.
A model of measurement is proposed which lends itself to theoretical analysis using Hamiltonian mechanics and Bayesian probability.
The process of continuous measurement is then examined; yielding a novel pair of Liouville-like master equations.
arXiv Detail & Related papers (2021-04-05T06:09:28Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.