論文の概要: Multivariate Scenario Generation of Day-Ahead Electricity Prices using Normalizing Flows
- arxiv url: http://arxiv.org/abs/2311.14033v2
- Date: Fri, 22 Mar 2024 09:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:30:18.451659
- Title: Multivariate Scenario Generation of Day-Ahead Electricity Prices using Normalizing Flows
- Title(参考訳): 正規化フローを用いた日頭電力価格の多変量シナリオ生成
- Authors: Hannes Hilger, Dirk Witthaut, Manuel Dahmen, Leonardo Rydin Gorjao, Julius Trebbien, Eike Cramer,
- Abstract要約: 本研究では, 正規化フローと呼ばれる完全データ駆動型深部発電モデルを用いて, 日頭電力価格の確率的予測手法を提案する。
その結果,正規化フローは真の価格分布を再現し,正確な予測を行う高品質なシナリオを生成することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trading on the day-ahead electricity markets requires accurate information about the realization of electricity prices and the uncertainty attached to the predictions. Deriving accurate forecasting models presents a difficult task due to the day-ahead price's non-stationarity resulting from changing market conditions, e.g., due to changes resulting from the energy crisis in 2021. We present a probabilistic forecasting approach for day-ahead electricity prices using the fully data-driven deep generative model called normalizing flow. Our modeling approach generates full-day scenarios of day-ahead electricity prices based on conditional features such as residual load forecasts. Furthermore, we propose extended feature sets of prior realizations and a periodic retraining scheme that allows the normalizing flow to adapt to the changing conditions of modern electricity markets. Our results highlight that the normalizing flow generates high-quality scenarios that reproduce the true price distribution and yield accurate forecasts. Additionally, our analysis highlights how our improvements towards adaptations in changing regimes allow the normalizing flow to adapt to changing market conditions and enable continued sampling of high-quality day-ahead price scenarios.
- Abstract(参考訳): 日頭電気市場の取引には、電力価格の実現と予測に付随する不確実性に関する正確な情報が必要である。
正確な予測モデルの導出は、2021年のエネルギー危機による変化による市場条件の変化など、日頭価格の非定常性による困難な課題である。
本研究では, 正規化フローと呼ばれる完全データ駆動型深部発電モデルを用いて, 日頭電力価格の確率的予測手法を提案する。
本手法は,残負荷予測などの条件付き特徴に基づいて,日頭電力価格のフルデイシナリオを生成する。
さらに, 先行実現のための拡張的特徴セットと, 正規化フローを現代電力市場の変動条件に適応させる定期的再訓練方式を提案する。
その結果,正規化フローは真の価格分布を再現し,正確な予測を行う高品質なシナリオを生成することがわかった。
さらに、我々の分析は、変革体制の適応に対する我々の改善によって、正常化フローが市場の状況の変化に適応し、高品質な日頭価格シナリオの継続的なサンプリングを可能にする方法を強調している。
関連論文リスト
- Revisiting Day-ahead Electricity Price: Simple Model Save Millions [7.088576782842557]
本稿では,予測可能な需要供給値から直接価格を導出することにより,予測精度を著しく向上する簡易な断片的線形モデルを提案する。
バングラデシュの山西省とISO New Englandの電力市場実験によると、こうした予測は年間数百万ドル節約できる可能性がある。
論文 参考訳(メタデータ) (2024-05-20T08:27:14Z) - Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices [0.0]
本稿では,ドイツの日内取引市場における電力価格のベイズ予測に関する第1報について述べる。
検証には2022年の極端に不安定な電力価格を使用します。
我々は、電気価格予測における特徴選択にLASSOを用いるという宣言されたゴールド標準に挑戦し、OMPがより良い予測性能をもたらすという強い統計的証拠を提示する。
論文 参考訳(メタデータ) (2024-03-08T16:51:27Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
深層学習層として電力市場浄化最適化を組み込むことを提案する。
このレイヤを差別化することで、予測と価格エラーのバランスをとることができる。
風力発電予測と短期電力市場浄化のネクサスにおける価格認識深層学習について紹介する。
論文 参考訳(メタデータ) (2023-08-02T21:16:05Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
本研究では,日内市場におけるリターン分布の位置,形状,スケールパラメータのモデル化手法を提案する。
風と太陽の予測と、その日内更新、停電、価格情報、および、メリットの順序を形作るための新しい尺度について検討する。
ボラティリティは、利益秩序体制、納期、国境を越えた注文書の閉鎖によってもたらされる。
論文 参考訳(メタデータ) (2022-11-23T15:08:50Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Normalizing Flow-based Day-Ahead Wind Power Scenario Generation for
Profitable and Reliable Delivery Commitments by Wind Farm Operators [62.997667081978825]
本稿では,予測情報を利用して,日頭スケジューリング問題における特定の利用シナリオを生成するシナリオ生成手法を提案する。
特に,日頭風速予測を用いて,そのシナリオを特定の日に合わせて調整する条件分布から,正規化フローを用いて風力発電シナリオを生成する。
本稿では,風力発電者の日頭入札問題に生成シナリオを適用し,そのシナリオが有益で信頼性の高い意思決定をもたらすかどうかに着目した統計的分析を行う。
論文 参考訳(メタデータ) (2022-04-05T14:27:25Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
正規化フローに基づく1つの基盤となる1つのマーケットシミュレータを現実的に構築する。
本研究では, 正規化流れの条件付き可逆性を活用し, 独立シミュレータの連立分布をキャリブレーションするスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T17:34:28Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
電力需要プロファイルを24時間以内に予測するために,オフライン11とオンライン5の学習アルゴリズムが与える影響を調査した。
最良オフラインアルゴリズムと比較して,オンラインアルゴリズムを用いて平均絶対誤差を30%削減できることを示した。
また,予測精度の大きな誤差は,17年間の投資に不均等な誤差があることを示す。
論文 参考訳(メタデータ) (2021-03-07T11:28:54Z) - Transfer Learning for Electricity Price Forecasting [0.0]
本稿では,他の電力価格市場からの情報を予測に活用する手段として,トランスファーラーニング(Transfer Learning)を提案する。
5つの異なる日頭市場における実験から,移動学習は電力価格予測の性能を統計的に有意な方法で向上させることが示された。
論文 参考訳(メタデータ) (2020-07-05T17:24:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。