論文の概要: Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market
- arxiv url: http://arxiv.org/abs/2412.00062v1
- Date: Mon, 25 Nov 2024 20:04:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:17:52.140778
- Title: Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market
- Title(参考訳): ディープラーニングによる電力市場における仮想入札の電力価格予測
- Authors: Xuesong Wang, Sharaf K. Magableh, Oraib Dawaghreh, Caisheng Wang, Jiaxuan Gong, Zhongyang Zhao, Michael H. Liao,
- Abstract要約: 本研究では,ERCOT(Electric Reliability Council of Texas)市場におけるリアルタイム電力価格と日頭電力価格の間に広がる価格を予測するためのトランスフォーマーに基づくディープラーニングモデルを提案する。
提案したモデルは現実的な制約の下で訓練され、毎週モデルを更新してウォーキングフォワードアプローチを用いて検証される。
その結果, ピーク時のみの取引戦略が50%を超える精度で, ほぼ一貫した利益をもたらすことがわかった。
- 参考スコア(独自算出の注目度): 3.130428666578115
- License:
- Abstract: Virtual bidding plays an important role in two-settlement electric power markets, as it can reduce discrepancies between day-ahead and real-time markets. Renewable energy penetration increases volatility in electricity prices, making accurate forecasting critical for virtual bidders, reducing uncertainty and maximizing profits. This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market. The proposed model leverages various time-series features, including load forecasts, solar and wind generation forecasts, and temporal attributes. The model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week. Based on the price spread prediction results, several trading strategies are proposed and the most effective strategy for maximizing cumulative profit under realistic market conditions is identified through backtesting. The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period. The proposed method underscores the importance of an accurate electricity price forecasting model and introduces a new method of evaluating the price forecast model from a virtual bidder's perspective, providing valuable insights for future research.
- Abstract(参考訳): 仮想入札は、日頭とリアルタイムの市場間の不一致を減らすことができるため、2つの定住型電力市場において重要な役割を果たす。
再生可能エネルギーの浸透は電気価格のボラティリティを高め、仮想入札者にとって正確な予測を重要とし、不確実性を低減し利益を最大化する。
本研究では,ERCOT(Electric Reliability Council of Texas)市場におけるリアルタイム電力価格と日頭電力価格の間に広がる価格を予測するためのトランスフォーマーに基づくディープラーニングモデルを提案する。
提案モデルでは,負荷予測,太陽風・風速予測,時間特性などの時系列特性を利用する。
モデルは現実的な制約の下でトレーニングされ、毎週モデルを更新してウォークフォワードアプローチを使用して検証される。
価格展開予測結果に基づき、いくつかの取引戦略を提案し、現実的な市場条件下での累積利益を最大化するための最も効果的な戦略をバックテストにより特定する。
その結果, ピーク時のみの取引戦略が50%を超える精度で, ほぼ一貫した利益をもたらすことがわかった。
提案手法は、正確な電気価格予測モデルの重要性を強調し、仮想入札者の視点から価格予測モデルを評価する新しい手法を導入し、将来の研究に有用な洞察を提供する。
関連論文リスト
- Revisiting Day-ahead Electricity Price: Simple Model Save Millions [7.088576782842557]
本稿では,予測可能な需要供給値から直接価格を導出することにより,予測精度を著しく向上する簡易な断片的線形モデルを提案する。
バングラデシュの山西省とISO New Englandの電力市場実験によると、こうした予測は年間数百万ドル節約できる可能性がある。
論文 参考訳(メタデータ) (2024-05-20T08:27:14Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
深層学習層として電力市場浄化最適化を組み込むことを提案する。
このレイヤを差別化することで、予測と価格エラーのバランスをとることができる。
風力発電予測と短期電力市場浄化のネクサスにおける価格認識深層学習について紹介する。
論文 参考訳(メタデータ) (2023-08-02T21:16:05Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
再生可能エネルギー容量の指数的な成長は、電力価格と発電に大きな不確実性をもたらした。
両方の市場に参加しているエネルギートレーダーにとって、不均衡価格の予測は特に関心がある。
予測は配達の30分前に行われ、トレーダーがまだ取引先を選択する可能性がある。
論文 参考訳(メタデータ) (2022-05-23T16:32:20Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short
Term Electricity Price Forecasting [0.0]
本研究では、一般化長メモリ自己回帰モデル(k-factor GARMA)に基づく新しいハイブリッドモデルの予測性能について検討する。
提案モデルの性能を北プール電力市場のデータを用いて評価した。
論文 参考訳(メタデータ) (2022-04-18T12:21:25Z) - Learning the Gap in the Day-Ahead and Real-Time Locational Marginal
Prices in the Electricity Market [0.0]
機械学習アルゴリズムとディープニューラルネットワークは、日頭電気市場とリアルタイム電気市場の間の価格差の値を予測するために使用される。
提案手法を評価し,ニューラルネットワークはギャップの正確な値を予測できる有望な結果を示した。
論文 参考訳(メタデータ) (2020-12-23T16:49:24Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
EPEC市場におけるエネルギースポット価格予測のためのハイブリッドモデリング手法について検討する。
データは2013-2014年の電力価格、2015年のテストデータで提供された。
論文 参考訳(メタデータ) (2020-10-14T12:45:53Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。