An Improved Method for Quantum Matrix Multiplication
- URL: http://arxiv.org/abs/2311.14044v1
- Date: Thu, 23 Nov 2023 15:00:36 GMT
- Title: An Improved Method for Quantum Matrix Multiplication
- Authors: Nhat A. Nghiem and Tzu-Chieh Wei
- Abstract summary: Following the celebrated quantum algorithm for solving linear equations, we provide an approach to solve a linear system of equations with exponentially improved dependence on precision.
A few examples that motivate this application are included and we further discuss an application of this improved matrix application algorithm explicitly with an efficient quantum procedure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the celebrated quantum algorithm for solving linear equations
(so-called HHL algorithm), Childs, Kothari and Somma [SIAM Journal on
Computing, {\bf 46}: 1920, (2017)] provided an approach to solve a linear
system of equations with exponentially improved dependence on precision. In
this note, we aim to complement such a result for applying a matrix to some
quantum state, based upon their Chebyshev polynomial approach. A few examples
that motivate this application are included and we further discuss an
application of this improved matrix application algorithm explicitly with an
efficient quantum procedure.
Related papers
- A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - Quantum Iterative Methods for Solving Differential Equations with Application to Computational Fluid Dynamics [14.379311972506791]
We propose quantum methods for solving differential equations based on a gradual improvement of the solution via an iterative process.
We benchmark the approach on paradigmatic fluid dynamics problems.
arXiv Detail & Related papers (2024-04-12T17:08:27Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
We numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms.
Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
arXiv Detail & Related papers (2023-12-25T08:50:22Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Quantum gradient descent algorithms for nonequilibrium steady states and
linear algebraic systems [0.17188280334580192]
gradient descent is a key ingredient in variational quantum algorithms and machine learning tasks.
We present approaches to simulate the nonequilibrium steady states of Markovian open quantum many-body systems.
We adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications.
arXiv Detail & Related papers (2022-04-15T01:20:33Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.