Preconditioning for a Variational Quantum Linear Solver
- URL: http://arxiv.org/abs/2312.15657v3
- Date: Tue, 23 Apr 2024 15:09:29 GMT
- Title: Preconditioning for a Variational Quantum Linear Solver
- Authors: Aruto Hosaka, Koichi Yanagisawa, Shota Koshikawa, Isamu Kudo, Xiafukaiti Alifu, Tsuyoshi Yoshida,
- Abstract summary: We numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms.
Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply preconditioning, which is widely used in classical solvers for linear systems $A\textbf{x}=\textbf{b}$, to the variational quantum linear solver. By utilizing incomplete LU factorization as a preconditioner for linear equations formed by $128\times128$ random sparse matrices, we numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms. This reduction in circuit depth is crucial to improving the efficiency and accuracy of Noisy Intermediate-Scale Quantum (NISQ) algorithms. Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm for reducing classical optimization problems to classical decoding problems.
We show that DQI achieves a better approximation ratio than any quantum-time classical algorithm known to us.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
We propose a quantum algorithm based on the recent advances on adiabatic-inspired QLSA.
We rigorously show that the total complexity of our implementation is polylogarithmic in the dimension.
arXiv Detail & Related papers (2024-03-28T20:37:32Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.