Scalable AI Safety via Doubly-Efficient Debate
- URL: http://arxiv.org/abs/2311.14125v1
- Date: Thu, 23 Nov 2023 17:46:30 GMT
- Title: Scalable AI Safety via Doubly-Efficient Debate
- Authors: Jonah Brown-Cohen, Geoffrey Irving, Georgios Piliouras
- Abstract summary: The emergence of pre-trained AI systems with powerful capabilities has raised a critical challenge for AI safety.
The original framework was based on the assumption that honest strategy is able to simulate AI systems for an exponential number of steps.
We show how to address these challenges by designing a new set of protocols.
- Score: 37.25328923531058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of pre-trained AI systems with powerful capabilities across a
diverse and ever-increasing set of complex domains has raised a critical
challenge for AI safety as tasks can become too complicated for humans to judge
directly. Irving et al. [2018] proposed a debate method in this direction with
the goal of pitting the power of such AI models against each other until the
problem of identifying (mis)-alignment is broken down into a manageable
subtask. While the promise of this approach is clear, the original framework
was based on the assumption that the honest strategy is able to simulate
deterministic AI systems for an exponential number of steps, limiting its
applicability. In this paper, we show how to address these challenges by
designing a new set of debate protocols where the honest strategy can always
succeed using a simulation of a polynomial number of steps, whilst being able
to verify the alignment of stochastic AI systems, even when the dishonest
strategy is allowed to use exponentially many simulation steps.
Related papers
- Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
We posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold.
Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours.
arXiv Detail & Related papers (2024-07-04T05:46:39Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - The AI Security Pyramid of Pain [0.18820558426635298]
We introduce the AI Security Pyramid of Pain, a framework that adapts the cybersecurity Pyramid of Pain to categorize and prioritize AI-specific threats.
This framework provides a structured approach to understanding and addressing various levels of AI threats.
arXiv Detail & Related papers (2024-02-16T21:14:11Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - The Alignment Problem in Context [0.05657375260432172]
I assess whether we are on track to solve the alignment problem for large language models.
I argue that existing strategies for alignment are insufficient, because large language models remain vulnerable to adversarial attacks.
It follows that the alignment problem is not only unsolved for current AI systems, but may be intrinsically difficult to solve without severely undermining their capabilities.
arXiv Detail & Related papers (2023-11-03T17:57:55Z) - AI Hazard Management: A framework for the systematic management of root
causes for AI risks [0.0]
This paper introduces the AI Hazard Management (AIHM) framework.
It provides a structured process to systematically identify, assess, and treat AI hazards.
It builds upon an AI hazard list from a comprehensive state-of-the-art analysis.
arXiv Detail & Related papers (2023-10-25T15:55:50Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
We present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning.
A core component of our work is to introduce textitagency, such that it is simple to define and create complex scenarios.
We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment.
arXiv Detail & Related papers (2021-06-25T00:21:41Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.